Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \(AB = 2a,\,\,AD = 3a\) (tham khảo hình vẽ). Tam giác \[SAB\] cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy; góc giữa mặt phẳng \(\left( {SCD} \right)\) và mặt đáy là \(45^\circ \). Gọi \[H\] là trung điểm cạnh AB. Khoảng cách giữa hai đoạn thẳng \[SD\] và \[CH\] bằng:

Quảng cáo
Trả lời:
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \bot \left( {ABCD} \right)}\\{\left( {SAB} \right) \cap \left( {ABCD} \right) = AB}\\{SH \bot AB\,;\,\,SH \subset \left( {SAB} \right)}\end{array}\,\,\, \Rightarrow SH \bot \left( {ABCD} \right)} \right..\)
Kẻ \(HK \bot CD\,\,\left( {K \in CD} \right)\). Ta có \(\left\{ \begin{array}{l}CD \bot HK\\CD \bot SH\end{array} \right.\)\( \Rightarrow CD \bot \left( {SHK} \right) \Rightarrow CD \bot SK\).
Gọi \(I\) là điểm đối xứng với \(H\) qua \(K\). Khi đó \(\Delta CKH = \Delta DKI\), suy ra \(\widehat {CHK} = \widehat {DIK}\).
Mà hai góc này ở vị trí so le trong nên \[DI\,{\rm{//}}\,HC\], suy ra \[HC\,{\rm{//}}\,\left( {SID} \right)\].
\[ \Rightarrow d\left( {HC,\,\,SD} \right) = d\left( {HC,\,\,\left( {SID} \right)} \right) = d\left( {H,\,\,\left( {SID} \right)} \right)\].
Trong mặt phẳng \(\left( {ABCD} \right)\), kẻ \(HE \bot DI\,\,\left( {E \in DI} \right)\), trong mp\(\left( {SHE} \right)\) kẻ \(HF \bot SE\,\,\left( {F \in SE} \right).\)
Ta có \(\left\{ \begin{array}{l}DI \bot HE\\DI \bot SH\end{array} \right. \Rightarrow DI \bot \left( {SHE} \right) \Rightarrow DI \bot HF.\)
\[\left\{ \begin{array}{l}HF \bot SE\\HF \bot DI\end{array} \right. \Rightarrow HF \bot \left( {SID} \right)\]\[ \Rightarrow d\left( {H,\,\,\left( {SID} \right)} \right) = HF\].
+) Tính \(HE\):

• Xét \(\Delta DKI\) vuông tại \(K\) có \(\sin \widehat {DIK} = \frac{{DK}}{{DI}} = \frac{a}{{\sqrt {{a^2} + {{\left( {3a} \right)}^2}} }} = \frac{1}{{\sqrt {10} }}.\)
• Xét \(\Delta HIE\) vuông tại \(E\) có \[HE = HI \cdot \sin I = 6a \cdot \frac{1}{{\sqrt {10} }} = \frac{{3a\sqrt {10} }}{5}.\]
+) Tính \(SH\):

+) Tính \(HF\): Xét tam giác \[SHE\] vuông tại \(H\) có \(HF\) là đường cao nên
\(\frac{1}{{H{F^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{E^2}}} = \frac{1}{{9{a^2}}} + \frac{1}{{\frac{{18}}{5}{a^2}}} = \frac{7}{{18{a^2}}} \Rightarrow HF = \frac{{3a\sqrt {14} }}{7}.\)
Vậy \[{\rm{d}}\left( {SD,\,\,CH} \right) = \frac{{3\sqrt {14} a}}{7}\]. Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].
Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].
Đáp án cần nhập là: \(55\).
Câu 2
Lời giải
Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.
Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).
Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hàm số y = f( x] có bảng biến thiên như sau: (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid1-1768272301.png)