Câu hỏi:

14/01/2026 6 Lưu

Gieo một con xúc xắc cân đối đồng chất 2 lần.

a) Số phần tử của không gian mẫu là 36.

Đúng
Sai

b) Xác suất của biến cố “Tổng số chấm của hai lần gieo chia hết cho 5” bằng 0.

Đúng
Sai
c) Xác suất của biến cố “Tổng số chấm của hai lần gieo lớn hơn 6” bằng \(\frac{1}{4}\).
Đúng
Sai

d) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt 2 chấm” bằng \(\frac{1}{6}\).

Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Số phần tử của không gian mẫu là 36.

b) Gọi \(A\) là biến cố “Tổng số chấm của hai lần gieo chia hết cho 5”.

Khi đó \(A = \left\{ {\left( {1;4} \right);\left( {4;1} \right);\left( {2;3} \right);\left( {3;2} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;5} \right)} \right\} \Rightarrow n\left( A \right) = 7\).

Do đó \(P\left( A \right) = \frac{7}{{36}}\).

c) Gọi \(B\) là biến cố “Tổng số chấm của hai lần gieo lớn hơn 6”.

\(B = \left\{ \begin{array}{l}\left( {1;6} \right);\left( {6;1} \right);\left( {2;5} \right);\left( {5;2} \right);\left( {2;6} \right);\left( {6;2} \right);\left( {3;4} \right);\left( {4;3} \right);\left( {3;5} \right);\\\left( {5;3} \right);\left( {3;6} \right);\left( {6;3} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {5;4} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;5} \right);\left( {5;6} \right);\left( {6;5} \right);\left( {6;6} \right)\end{array} \right\}\)\( \Rightarrow n\left( B \right) = 21\).

Do đó \(P\left( B \right) = \frac{{21}}{{36}} = \frac{7}{{12}}\).

d) \(C\) là biến cố “Lần thứ nhất xuất hiện mặt 2 chấm” .

\(C = \left\{ {\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right)} \right\}\)\( \Rightarrow n\left( C \right) = 6\).

Do đó \(P\left( C \right) = \frac{6}{{36}} = \frac{1}{6}\).

Đáp án: a) Đúng;     b) Sai;     c) Sai;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu là \(8! = 40320\).

Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.

TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.

TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.

Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).

Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).

Câu 2

a) Xác suất để có đúng một màu bằng \(\frac{1}{{429}}\).

Đúng
Sai

b) Xác suất để có đúng hai màu đỏ và vàng bằng \(\frac{1}{{429}}\).

Đúng
Sai

c) Xác suất để có ít nhất 1 bi đỏ bằng \(\frac{{139}}{{143}}\).

Đúng
Sai
d) Xác suất để có ít nhất 2 bi xanh bằng \(\frac{{32}}{{39}}\).
Đúng
Sai

Lời giải

Số phần tử của không gian mẫu là \(C_{14}^6 = 3003\).

a) Gọi \(A\) là biến cố “Có đúng một màu”. Khi đó \(n\left( A \right) = C_7^6 = 7\).

Do đó \(P\left( A \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).

b) Gọi \(B\) là biến cố “Có đúng hai màu đỏ và vàng ” \( \Rightarrow n\left( B \right) = C_7^6 = 7\).

Do đó \(P\left( B \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).

c) Gọi \(C\) là biến cố “Có ít nhất 1 bi đỏ”.

\(\overline C \) là biến cố “Không có bi màu đỏ” \( \Rightarrow n\left( {\overline C } \right) = C_9^6 = 84\).

Khi đó \(P\left( {\overline C } \right) = \frac{{84}}{{3003}} = \frac{4}{{143}}\). Do đó \(P\left( C \right) = 1 - \frac{4}{{143}} = \frac{{139}}{{143}}\).

d) Gọi \(D\) là biến cố “Có ít nhất 2 bi xanh”.

\(\overline D \) là biến cố “Có nhiều nhất 1 bi xanh”.

TH1: Không có bi xanh có \(C_7^6 = 7\) cách.

TH2: Có 1 bi xanh có \(C_7^1 \cdot C_7^5 = 147\) cách.

Suy ra \(n\left( {\overline D } \right) = 154\). Do đó \(P\left( {\overline D } \right) = \frac{{154}}{{3003}} = \frac{2}{{39}} \Rightarrow P\left( D \right) = \frac{{37}}{{39}}\).

Đáp án: a) Đúng;    b) Đúng;     c) Đúng;    d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{5}\).             
B. \(\frac{1}{{10}}\).        
C. \(\frac{2}{9}\).             
D. \(\frac{1}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP