Câu hỏi:

14/01/2026 5 Lưu

Một nhóm gồm 4 học sinh nam và 5 học sinh nữ. Chọn ngẫu nhiên 3 học sinh để đi tập văn nghệ.

a) Số phần tử không gian mẫu là 84.

Đúng
Sai

b) Có 30 cách chọn được 3 học sinh có ít nhất 2 nữ.

Đúng
Sai

c) Xác suất chọn được 3 học sinh toàn nam là \(\frac{1}{{21}}\).

Đúng
Sai
d) Xác suất chọn được 3 học sinh toàn nữ là \(\frac{5}{7}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Số phần tử không gian mẫu là \(C_9^3 = 84\).

b) TH1: Chọn được 2 nữ, 1 nam có \(C_5^2 \cdot C_4^1 = 40\) cách.

TH2: Chọn được 3 nữ có \(C_5^3 = 10\).

Số cách chọn 3 học sinh có ít nhất 2 nữ là \(40 + 10 = 50\) cách.

c) Gọi \(A\) là biến cố “Chọn được 3 học sinh toàn nam” \( \Rightarrow n\left( A \right) = C_4^3 = 4\).

Do đó \(P\left( A \right) = \frac{4}{{84}} = \frac{1}{{21}}\).

d) Gọi \(B\) là biến cố “Chọn được 3 học sinh toàn nữ” \( \Rightarrow n\left( B \right) = C_5^3 = 10\).

Do đó \(P\left( B \right) = \frac{{10}}{{84}} = \frac{5}{{42}}\).

Đáp án: a) Đúng;    b) Sai;     c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu là \(8! = 40320\).

Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.

TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.

TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.

Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).

Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).

Câu 2

a) Xác suất để có đúng một màu bằng \(\frac{1}{{429}}\).

Đúng
Sai

b) Xác suất để có đúng hai màu đỏ và vàng bằng \(\frac{1}{{429}}\).

Đúng
Sai

c) Xác suất để có ít nhất 1 bi đỏ bằng \(\frac{{139}}{{143}}\).

Đúng
Sai
d) Xác suất để có ít nhất 2 bi xanh bằng \(\frac{{32}}{{39}}\).
Đúng
Sai

Lời giải

Số phần tử của không gian mẫu là \(C_{14}^6 = 3003\).

a) Gọi \(A\) là biến cố “Có đúng một màu”. Khi đó \(n\left( A \right) = C_7^6 = 7\).

Do đó \(P\left( A \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).

b) Gọi \(B\) là biến cố “Có đúng hai màu đỏ và vàng ” \( \Rightarrow n\left( B \right) = C_7^6 = 7\).

Do đó \(P\left( B \right) = \frac{7}{{3003}} = \frac{1}{{429}}\).

c) Gọi \(C\) là biến cố “Có ít nhất 1 bi đỏ”.

\(\overline C \) là biến cố “Không có bi màu đỏ” \( \Rightarrow n\left( {\overline C } \right) = C_9^6 = 84\).

Khi đó \(P\left( {\overline C } \right) = \frac{{84}}{{3003}} = \frac{4}{{143}}\). Do đó \(P\left( C \right) = 1 - \frac{4}{{143}} = \frac{{139}}{{143}}\).

d) Gọi \(D\) là biến cố “Có ít nhất 2 bi xanh”.

\(\overline D \) là biến cố “Có nhiều nhất 1 bi xanh”.

TH1: Không có bi xanh có \(C_7^6 = 7\) cách.

TH2: Có 1 bi xanh có \(C_7^1 \cdot C_7^5 = 147\) cách.

Suy ra \(n\left( {\overline D } \right) = 154\). Do đó \(P\left( {\overline D } \right) = \frac{{154}}{{3003}} = \frac{2}{{39}} \Rightarrow P\left( D \right) = \frac{{37}}{{39}}\).

Đáp án: a) Đúng;    b) Đúng;     c) Đúng;    d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{2}\).             
B. \(\frac{5}{{36}}\).        
C. \(\frac{1}{6}\).             
D. \(\frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{5}\).             
B. \(\frac{1}{{10}}\).        
C. \(\frac{2}{9}\).             
D. \(\frac{1}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Số phần tử của không gian mẫu là 90.

Đúng
Sai

b) Xác suất để rút được hai tấm thẻ được đánh số cùng chia hết cho 2 là \(\frac{2}{9}\).

Đúng
Sai

c) Xác suất để rút được hai tấm thẻ được đánh số đều là số nguyên tố là \(\frac{1}{{15}}\).

Đúng
Sai
d) Xác suất để rút được hai tấm thẻ có tổng là một số lẻ là \(\frac{5}{9}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP