Câu hỏi:

15/01/2026 6 Lưu

Trong một chiếc hộp có 5 viên bi màu đỏ, 6 viên bi màu xanh. An lấy ngẫu nhiên ra 3 viên bi. Tính xác suất để 3 viên bi lấy ra đều là màu đỏ.

A. \(\frac{2}{{33}}\).            

B. \(\frac{5}{6}\).     
C. \(\frac{5}{{11}}\).        
D. \(\frac{{31}}{{33}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là \(C_{11}^3 = 165\).

Số cách lấy ra 3 viên bi đều là màu đỏ là \(C_5^3 = 10\).

Xác suất để 3 viên bi lấy ra đều là màu đỏ là \(P = \frac{{10}}{{165}} = \frac{2}{{33}}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số phần tử của không gian mẫu là 90.
Đúng
Sai
b) Xác suất để rút được hai tấm thẻ được đánh số cùng chia hết cho 2 là \(\frac{2}{9}\).
Đúng
Sai
c) Xác suất để rút được hai tấm thẻ được đánh số đều là số nguyên tố là \(\frac{1}{{15}}\).
Đúng
Sai
d) Xác suất để rút được hai tấm thẻ có tổng là một số lẻ là \(\frac{5}{9}\).
Đúng
Sai

Lời giải

a) Số phần tử của không gian mẫu là \(C_{10}^2 = 45\).

b) Gọi \(A\) là biến cố “hai tấm thẻ được đánh số cùng chia hết hết cho 2”.

Các số chia hết cho 2 là \(\left\{ {2;4;6;8;10} \right\} \Rightarrow n\left( A \right) = C_5^2 = 10\).

Do đó \(P\left( A \right) = \frac{{10}}{{45}} = \frac{2}{9}\).

c) Gọi \(B\) là biến cố “hai tấm thẻ được đánh số đều là số nguyên tố”.

Các số nguyên tố là \(\left\{ {2;3;5;7} \right\}\)\( \Rightarrow n\left( B \right) = C_4^2 = 6\).

Do đó \(P\left( B \right) = \frac{6}{{45}} = \frac{2}{{15}}\).

d) Gọi \(C\) là biến cố “hai tấm thẻ có tổng là một số lẻ”.

Từ 1 đến 10 có 5 số chẵn và 5 số lẻ.

Để tổng 2 số là số lẻ thì cần lấy được 1 số chẵn và số lẻ. Khi đó \(n\left( C \right) = C_5^1 \cdot C_5^1 = 25\).

Do đó \(P\left( C \right) = \frac{{25}}{{45}} = \frac{5}{9}\).

Đáp án: a) Sai;    b) Đúng;     c) Sai;    d) Đúng.

Lời giải

Số phần tử của không gian mẫu là \(8! = 40320\).

Gọi \(A\) là biến cố “Xếp được các bạn nam và bạn nữ đứng xen kẽ nhau”.

TH1: Xếp bạn nam đứng vị trí lẻ, nữ đứng vị trí chẵn có \(4! \cdot 4!\) cách.

TH2: Xếp bạn nam đứng vị trí chẵn, nữ đứng vị trí lẻ có \(4! \cdot 4!\) cách.

Suy ra \(n\left( A \right) = 2 \cdot 4! \cdot 4! = 1152\).

Do đó \(P\left( A \right) = \frac{{1152}}{{40320}} = \frac{1}{{35}} \approx 0,03\).

Trả lời: 0,03.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP