Câu hỏi:

17/01/2026 55 Lưu

Một hộp chứa 7 quả cầu màu xanh và 5 quả cầu màu đỏ. Chọn ngẫu nhiên từ hộp 4 quả cầu. Xác suất để chọn được không quá 2 quả cầu màu đỏ là \(\frac{a}{b}\)(\(\frac{a}{b}\) là phân số tối giản). Tính \(a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

61

Số phần tử của không gian mẫu là \(C_{12}^4 = 495\).

Gọi \(A\) là biến cố “4 quả được chọn có không quá 2 quả cầu màu đỏ”.

TH1: Chọn được 4 quả màu xanh có \(C_7^4 = 35\) cách.

TH2: Chọn được 3 quả màu xanh và 1 quả màu đỏ có \(C_7^3 \cdot C_5^1 = 175\) cách.

TH3: Chọn được 2 quả màu xanh và 2 quả màu đỏ có \(C_7^2 \cdot C_5^2 = 210\) cách.

Suy ra \(n\left( A \right) = 35 + 175 + 210 = 420\).

Vậy \(P\left( A \right) = \frac{{420}}{{495}} = \frac{{28}}{{33}}\). Suy ra \(a = 28;b = 33 \Rightarrow a + b = 61\).

Trả lời: 61.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 90\).
Đúng
Sai
b) Xác suất lấy được một số tự nhiên chẵn là 0,5.
Đúng
Sai
c) Xác suất lấy được số tự nhiên chia hết cho 3 là \(\frac{4}{9}\).
Đúng
Sai
d) Xác suất lấy được số có hai chữ số khác nhau là \(\frac{9}{{10}}\).
Đúng
Sai

Lời giải

a) Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 90\).

b) Gọi \(B\) là biến cố “Lấy được một số tự nhiên chẵn”.

Từ 10 đến 99 có 45 số chẵn và 45 số lẻ. Khi đó \(n\left( B \right) = 45\).

Khi đó \(P\left( B \right) = \frac{{45}}{{90}} = \frac{1}{2}\).

c) Gọi \(C\) là biến cố “Lấy được số tự nhiên chia hết cho 3”.

Từ 10 đến 99 có 30 số chia hết cho 3 \( \Rightarrow n\left( C \right) = 30\). Do đó \(P\left( C \right) = \frac{{30}}{{90}} = \frac{1}{3}\).

d) Gọi \(D\) là biến cố “Lấy được số có hai chữ số khác nhau”.

Xét \(\overline D \) là biến cố “Lấy được số có hai chữ số giống nhau”.

Ta có \(\overline D = \left\{ {11;22;33;44;55;66;77;88;99} \right\} \Rightarrow n\left( {\overline D } \right) = 9\).

Do đó \(P\left( D \right) = 1 - \frac{9}{{90}} = \frac{9}{{10}}\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;     d) Đúng.

Lời giải

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = {6^3} = 216\).

Gọi \(A\) là biến cố “Ba lần gieo có ít nhất một lần xuất hiện mặt 2 chấm”.

Xét \(\overline A \) là biến cố “Ba lần gieo không xuất hiện mặt 2 chấm”.

Khi đó \(n\left( {\overline A } \right) = {5^3} = 125\).

Suy ra \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{125}}{{216}} = \frac{{91}}{{216}}\). Suy ra \(a = 91;b = 216 \Rightarrow b - a = 125\).

Trả lời: 125.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overline A  = \left\{ {1;3;5;7} \right\}\).    

B. \(\overline A  = \left\{ {2;4;6;8} \right\}\).     
C. \(\overline A  = \left\{ {1;3;5;7;9} \right\}\).    
D. \(\overline A  = \left\{ {0;2;4;6;8} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP