PHẦN II. TỰ LUẬN
Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}.\)
a) Viết điều kiện xác định của biểu thức \[D.\]
b) Rút gọn biểu thức \(D.\)
c) Tính giá trị của biểu thức \[D\] biết \(\left( {2x - 1} \right)\left( {{x^2} + 1} \right) = 0.\)
PHẦN II. TỰ LUẬN
Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}.\)
a) Viết điều kiện xác định của biểu thức \[D.\]
b) Rút gọn biểu thức \(D.\)
c) Tính giá trị của biểu thức \[D\] biết \(\left( {2x - 1} \right)\left( {{x^2} + 1} \right) = 0.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Điều kiện xác định của biểu thức \[D\] là: \[3x \ne 0;{\rm{ }}x + 1 \ne 0;\]\(\frac{{2 - 4x}}{{x + 1}} \ne 0\)
Xét \[3x \ne 0\] ta có \[x \ne 0.\]
Xét \[x + 1 \ne 0\] ta có \[x \ne --1.\]
Xét \(\frac{{2 - 4x}}{{x + 1}} \ne 0\) ta có \[2--4x \ne 0\] và \[x + 1 \ne 0,\] hay \(x \ne \frac{1}{2}\) và \[x \ne --1.\]
Vậy điều kiện xác định của biểu thức \[D\] là \(x \ne 0;\,\,x \ne - 1;\,\,x \ne \frac{1}{2}.\)
b) Với \(x \ne 0;\,\,x \ne - 1;\,\,x \ne \frac{1}{2},\) ta có:
\(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
\( = \frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2 \cdot 3x - 3 \cdot 3x\left( {x + 1} \right)}}{{3x \cdot \left( {x + 1} \right)}} \cdot \frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
\( = \frac{{{x^2} + 2x + x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
\( = \frac{{ - 8{x^2} + 2}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
\( = \frac{{2\left( {1 - 4{x^2}} \right) \cdot \left( {x + 1} \right)}}{{3x\left( {x + 1} \right) \cdot \left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
\( = \frac{{2\left( {1 - 2x} \right)\left( {1 + 2x} \right)}}{{3x \cdot 2\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
\( = \frac{{1 + 2x}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{1 + 2x - 3x + {x^2} - 1}}{{3x}}\)
\( = \frac{{{x^2} - x}}{{3x}} = \frac{{x\left( {x - 1} \right)}}{{3x}} = \frac{{x - 1}}{3}\).
Vậy với \(x \ne 0;\,\,x \ne - 1;\,\,x \ne \frac{1}{2}\) thì \(D = \frac{{x - 1}}{3}.\)
c) Ta có \(\left( {2x - 1} \right)\left( {{x^2} + 1} \right) = 0\)
\(2x - 1 = 0\) hoặc \({x^2} + 1 = 0\) (vô nghiệm do \({x^2} + 1 > 0\) với mọi \(x)\)
\(x = \frac{1}{2}\)
Ta thấy \[x = \frac{1}{2}\] thỏa mãn điều kiện xác định.
Do đó, giá trị của biểu thức \[D\] tại \[x = \frac{1}{2}\] là: \(D = \frac{{\frac{1}{2} - 1}}{3} = \frac{{ - \frac{1}{2}}}{3} = - \frac{1}{6}.\)
Vậy \(D = - \frac{1}{6}\) khi \(\left( {2x - 1} \right)\left( {{x^2} + 1} \right) = 0.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pythagore ta có:
\(B{C^2} = A{B^2} + A{C^2} = {6^2} + {8^2} = 100.\)
Suy ra \(BC = 10{\rm{\;cm}}.\)
b) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat {BAC} = \widehat {AHC} = 90^\circ \) và \(\widehat {ACB}\) là góc chungDo đó (g.g).
c) Vì (câu b) ta có:
⦁ \[\frac{{AB}}{{HA}} = \frac{{BC}}{{AC}}\] (tỉ số cạnh tương ứng) hay \(\frac{6}{{AH}} = \frac{{10}}{8},\) suy ra \(AH = \frac{{6 \cdot 8}}{{10}} = 4,8{\rm{\;cm}}.\)
⦁ \(\frac{{AB}}{{HA}} = \frac{{AC}}{{HC}}\) (tỉ số cạnh tương ứng) hay \(\frac{6}{{4,8}} = \frac{8}{{HC}},\) suy ra \(HC = \frac{{4,8 \cdot 8}}{6} = 6,4{\rm{\;cm}}.\)
Ta có \(BC = HB + HC,\) suy ra \(HB = BC - HC = 10 - 6,4 = 3,6{\rm{\;cm}}.\)
d) Vì nên (định lí), do đó \(\frac{{EM}}{{BH}} = \frac{{AM}}{{AH}} = \frac{{3,2}}{{4,8}} = \frac{2}{3}.\)
Tương tự, ta có (định lí), do đó \(\frac{{MF}}{{HC}} = \frac{{AM}}{{AH}} = \frac{2}{3}.\)
Do đó \(EF = EM + MF = \frac{2}{3}BH + \frac{2}{3}HC = \frac{2}{3}\left( {BH + HC} \right) = \frac{2}{3}BC.\) Suy ra \(\frac{{EF}}{{BC}} = \frac{2}{3}.\)
Vì \(EF\,{\rm{//}}\,BC\) và \(AH \bot BC\) nên \(AH \bot EF.\)
Ta có \(\frac{{{S_{\Delta AEF}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}AM \cdot EF}}{{\frac{1}{2}AH \cdot BC}} = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}.\)
\({S_{\Delta ABC}} = \frac{1}{2} \cdot AB \cdot AC = \frac{1}{2} \cdot 6 \cdot 8 = 24{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Suy ra \({S_{\Delta AEF}} = \frac{4}{9}{S_{\Delta ABC}} = \frac{4}{9} \cdot 24 = \frac{{32}}{3}{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Vì theo tỉ số là \(\frac{2}{3},\) nên ta có \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}} = \frac{2}{3}.\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}} = \frac{{AB + BC + CA}}{{MN + NP + PM}} = \frac{2}{3}.\)
Hay \[\frac{{Chu{\rm{ }}vi{\rm{ }}\Delta ABC}}{{Chu{\rm{ }}vi{\rm{ }}\Delta MNP}} = \frac{2}{3},\] nên \[\frac{{40}}{{Chu{\rm{ }}vi{\rm{ }}\Delta MNP}} = \frac{2}{3}\]
Do đó chu vi tam giác \(MNP\) là: \(40 \cdot \frac{3}{2} = 60{\rm{\;(cm)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
