Câu hỏi:

16/01/2026 5 Lưu

PHẦN II. TỰ LUẬN

Cho biểu thức \(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}.\)

a) Viết điều kiện xác định của biểu thức \(P.\)

b) Rút gọn biểu thức \(P.\)

c) Tìm số nguyên \(x\) để \(P\) nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right).\)

Điều kiện xác định của biểu thức \(P\) là \(x - 1 \ne 0,\) \(x + 1 \ne 0,\) \(x \ne 0\) hay \(x \ne 1,\) \(x \ne  - 1\) và \(x \ne 0.\)

Vậy điều kiện xác định của biểu thức \(P\) là \(x \ne 1,\) \(x \ne  - 1\) và \(x \ne 0.\)

b) Với điều kiện \(x \ne 1,\) \(x \ne  - 1\) và \(x \ne 0,\) ta có:

\(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + 2x + 1 - \left( {{x^2} - 2x + 1} \right) + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{4x + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\[ = \frac{{x\left( {x + 1} \right) \cdot \left( {x + 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right) \cdot x}}\]\[ = \frac{{x + 4}}{{x - 1}}.\]

Vậy với \(x \ne 1,\) \(x \ne  - 1\) và \(x \ne 0,\) thì \[P = \frac{{x + 4}}{{x - 1}}.\]

c) Với \(x \ne 1,\) \(x \ne  - 1\) và \(x \ne 0,\) ta có \[P = \frac{{x + 4}}{{x - 1}} = \frac{{x - 1 + 5}}{{x - 1}} = 1 + \frac{5}{{x - 1}}.\]

Với \(x\) nguyên, để \(P\) đạt giá trị nguyên thì \(\frac{{2025}}{{x - 1}}\) là số nguyên

Do đó \(5 \vdots \left( {x - 1} \right)\) hay \(x - 1 \in \)Ư\(\left( 5 \right) = \left\{ {1; - 1;5; - 5} \right\}.\)

Ta có bảng sau:

\(x - 1\)

\(1\)

\( - 1\)

\(5\)

\( - 5\)

\(x\)

\(2\)

\(0\)

\(6\)

\( - 4\)

Đối chiếu điều kiện

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(x \in \left\{ {1;0;6; - 4} \right\}.\)        

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Với \(a \ne  - b;\,\,b \ne  - c;\,\,c \ne  - a\) ta xét \(\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} = 1.\) \(\left( 1 \right)\)

Do \(a \ne  - b;\,\,b \ne  - c;\,\,c \ne  - a\) nên \(a + b + c \ne 0.\)

Khi đó ta nhân hai vế của \(\left( 1 \right)\) với \(a + b + c\) thì được:

\(\frac{{a\left( {a + b + c} \right)}}{{b + c}} + \frac{{b\left( {a + b + c} \right)}}{{c + a}} + \frac{{c\left( {a + b + c} \right)}}{{a + b}} = a + b + c\)

Hay \(\frac{{{a^2} + a\left( {b + c} \right)}}{{b + c}} + \frac{{{b^2} + b\left( {a + c} \right)}}{{c + a}} + \frac{{{c^2} + c\left( {a + b} \right)}}{{a + b}} = a + b + c\)

Nên \(\frac{{{a^2}}}{{b + c}} + a + \frac{{{b^2}}}{{c + a}} + b + \frac{{{c^2}}}{{a + b}} + c = a + b + c\)

Suy ra \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)

Vậy \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)

Câu 2

A. \[x = 1.\]  
B. \[x = --1.\] 
C. \[x \in \left\{ {1;--1} \right\}.\]  
D. \[x = 0.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Điều kiện xác định của phân thức \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}}\) là \({x^2} - 2x + 1 \ne 0,\) hay \({\left( {x - 1} \right)^2} \ne 0,\) tức là \(x \ne 1.\)

Ta có \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}} = 0\) khi và chỉ khi \({x^2} - 1 = 0,\) suy ra \(x = 1\) (không thỏa mãn) hoặc \(x =  - 1\) (thỏa mãn).

Vậy \(x =  - 1.\)

Câu 3

A. \[4x + 6 = 0.\]       
B. \[4x--18 = 0.\]   
C. \[5x--6 = 0.\]       
D. \[6x--18 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{2x}}{{x - y}}.\) 
B. \[\frac{{x + y}}{{2x}}.\] 
C. \[ - \frac{{2x}}{{x + y}}.\]   
D. \[ - \frac{{3x}}{{x - y}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = \frac{1}{2}.\)    
B. \(x = \frac{3}{2}.\)    
C. \[x = 1.\]   
D. \[x = --1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP