Giải các phương trình sau:
a) \[x - 3\left( {2 - x} \right) = 2x - 4.\] b) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x.\)
Giải các phương trình sau:
a) \[x - 3\left( {2 - x} \right) = 2x - 4.\] b) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) \[x - 3\left( {2 - x} \right) = 2x - 4\] \[x - 6 + 3x = 2x - 4\] \[x + 3x - 2x = - 4 + 6\] \[2x = 2\] \[x = 1.\] Vậy phương trình đã cho có nghiệm \[x = 1.\]
|
b) \(\frac{{7x - 1}}{6} = \frac{{16 - x}}{5} - 2x\) \(\frac{{5\left( {7x - 1} \right)}}{{30}} = \frac{{6\left( {16 - x} \right)}}{{30}} - \frac{{2x \cdot 30}}{{30}}\) \(35x - 5 = 96 - 6x - 60x\) \(35x + 6x + 60x = 96 + 5\) \(101x = 101\) \(x = 1.\) Vậy phương trình đã cho có nghiệm \(x = 1.\) |
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có: \[5x--\left( {6--x} \right) = 12\]
\[5x--6 + x - 12 = 0\]
\[6x - 18 = 0\]
Vậy ta đưa được phương trình đã cho về phương trình bậc nhất một ẩn là \[6x--18 = 0.\]
Lời giải
Hướng dẫn giải
Với \(a \ne - b;\,\,b \ne - c;\,\,c \ne - a\) ta xét \(\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} = 1.\) \(\left( 1 \right)\)
Do \(a \ne - b;\,\,b \ne - c;\,\,c \ne - a\) nên \(a + b + c \ne 0.\)
Khi đó ta nhân hai vế của \(\left( 1 \right)\) với \(a + b + c\) thì được:
\(\frac{{a\left( {a + b + c} \right)}}{{b + c}} + \frac{{b\left( {a + b + c} \right)}}{{c + a}} + \frac{{c\left( {a + b + c} \right)}}{{a + b}} = a + b + c\)
Hay \(\frac{{{a^2} + a\left( {b + c} \right)}}{{b + c}} + \frac{{{b^2} + b\left( {a + c} \right)}}{{c + a}} + \frac{{{c^2} + c\left( {a + b} \right)}}{{a + b}} = a + b + c\)
Nên \(\frac{{{a^2}}}{{b + c}} + a + \frac{{{b^2}}}{{c + a}} + b + \frac{{{c^2}}}{{a + b}} + c = a + b + c\)
Suy ra \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)
Vậy \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.