Bây giờ là 10 giờ đúng. Biết rằng sau ít nhất \(x\) phút nữa thì kim phút và kim giờ tạo thành hai tia vuông góc với nhau. Hỏi \(x\) gần nhất với giá trị nào trong các giá trị dưới đây?
Bây giờ là 10 giờ đúng. Biết rằng sau ít nhất \(x\) phút nữa thì kim phút và kim giờ tạo thành hai tia vuông góc với nhau. Hỏi \(x\) gần nhất với giá trị nào trong các giá trị dưới đây?

Quảng cáo
Trả lời:
Lúc 10 giờ đúng khoảng cách giữa hai kim (tính theo chiều kim đồng hồ) là \(\frac{{10}}{{12}} = \frac{5}{6}\) vòng đồng hồ.
Khi kim phút và kim giờ tạo thành hai tia vuông góc với nhau thì khoảng cách từ kim giờ đến kim phút (tính theo chiều kim đồng hồ) là \(\frac{1}{4}\) vòng đồng hồ. Vậy khoảng cách từ kim phút đến kim giờ lúc này (tính theo chiều kim đồng hồ) là: \(1 - \frac{1}{4} = \frac{3}{4}\) (vòng đồng hồ).
Trong khoảng thời gian đó thì kim phút đã đi nhiều hơn kim giờ là: \(\frac{5}{6} - \frac{3}{4} = \frac{1}{{12}}\) (vòng đồng hồ).
Hiệu vận tốc của hai kim đồng hồ là: \(1 - \frac{1}{{12}} = \frac{{11}}{{12}}\) (vòng đồng hồ/giờ).
Kể từ lúc 10 giờ đúng, khoảng thời gian ngắn nhất để kim phút và kim giờ tạo thành hai tia vuông góc với nhau là: \(\frac{1}{{12}}:\frac{{11}}{{12}} = \frac{1}{{11}}\) (giờ) \( \approx 5,5\) (phút). Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Tam thức bậc hai \(f\left( x \right) = {x^2} + 2mx + m - 2\) có:
\(\Delta ' = {m^2} - m + 2 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4} > 0\) với mọi \(m \in \mathbb{R}\).
Do đó \(f\left( x \right)\) có hai nghiệm phân biệt \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\) với mọi \(m \in \mathbb{R}\).
Để \(f\left( x \right) < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\) thì \({x_1} \le 1 < 2 \le {x_2}\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f\left( 1 \right) \le 0}\\{f\left( 2 \right) \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m + m - 2 \le 0}\\{4 + 4m + m - 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3m - 1 \le 0}\\{5m + 2 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \le \frac{1}{3}}\\{m \le \frac{{ - 2}}{5}}\end{array}} \right. \Leftrightarrow m \le \frac{{ - 2}}{5}\].
Vậy \(m \le \frac{{ - 2}}{5}\) thì \({x^2} + 2mx + m - 2 < 0\) với mọi \(x \in \left( {1;\,\,2} \right)\). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Được ưu tiên đầu tư, có khả năng phát triển các ngành mới và lan tỏa đến lãnh thổ khác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.