Câu hỏi:

20/01/2026 130 Lưu

Cho ba số đôi một khác nhau và khác \(0.\)

Biết \(\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}} = 0,\) tính giá trị của biểu thức \(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

 Với \(a \ne b \ne c \ne 0,\) từ \(\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}} = 0,\) suy ra:

\(\frac{a}{{b - c}} = \frac{b}{{a - c}} + \frac{c}{{b - a}} = \frac{{b\left( {b - a} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} + \frac{{c\left( {a - c} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)}}.\)

Nhân hai vế với \(\frac{1}{{b - c}}\) ta được:

\(\frac{a}{{{{\left( {b - c} \right)}^2}}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)\left( {b - c} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)

Tương tư, ta có: \(\frac{b}{{{{\left( {c - a} \right)}^2}}} = \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}};\,\,\frac{c}{{{{\left( {a - b} \right)}^2}}} = \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)

Cộng vế theo vế ba đẳng thức trên ta được:

\(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}}\)

\( = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\)

\( = \frac{0}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = 0.\)

Vậy \(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}} = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giải các phương trình sau:

a) \[x - 3\left( {2 - x} \right) = 2x - 4.\]   b) \[\frac{1}{3}\left( {x - 1} \right) + 4 = \frac{1}{2}\left( {x + 5} \right).\]

Lời giải

Hướng dẫn giải

a) \[x - 3\left( {2 - x} \right) = 2x - 4\]

\[x - 6 + 3x = 2x - 4\]

\[x + 3x - 2x = 6 - 4\]

\[2x = 2\]

\[x = 1\]

Vậy phương trình đã cho có nghiệm \(x = 1.\)

b) \[\frac{1}{3}\left( {x - 1} \right) + 4 = \frac{1}{2}\left( {x + 5} \right)\]

\[2\left( {x - 1} \right) + 24 = 3\left( {x + 5} \right)\]

\[2x - 2 + 24 = 3x + 15\]

\(2x - 3x = 15 + 2 - 24\)

\[ - x =  - 7\]

\[x = 7\]

Vậy phương trình đã cho có nghiệm \(x = 7.\)

Lời giải

Hướng dẫn giải

1) Hình vẽ bên mô tả bậc tam cấp.

Nhà bạn Thanh có nền nhà cao 35cm so với vỉa hè, chiều dài của bậc tam cấp (phần lấn ra vỉa hè) là 85cm thì có phù hợp với quy định của khu phố không? Vì sao? (ảnh 2)

Xét \(\Delta ABC\) vuông tại \(A,\) theo định lí Pythagore ta có: \(B{C^2} = A{B^2} + A{C^2}\)

Suy ra \(A{C^2} = B{C^2} - A{B^2} = {85^2} - {35^2} = 6\,\,000.\)

Do đó \(AC = \sqrt {6\,\,000}  \approx 77,46{\rm{\;cm}} < 80{\rm{\;cm}}.\)

Vậy bậc tam cấp nhà bạn Thanh phù hơp với quy định của khu phố.

2)
 Nhà bạn Thanh có nền nhà cao 35cm so với vỉa hè, chiều dài của bậc tam cấp (phần lấn ra vỉa hè) là 85cm thì có phù hợp với quy định của khu phố không? Vì sao? (ảnh 3)
a) Do \(ABCD\) là hình bình hành nên \(AB\,{\rm{//}}\,CD\) và \(AD\,{\rm{//}}\,BC.\)

Xét \(\Delta ADK\) có \(AD\,{\rm{//}}\,CN\) (do \(AD\,{\rm{//}}\,BC)\) nên ΔADKΔCNK (g.g).

b) Xét \(\Delta KAM\) có \(AM\,{\rm{//}}\,CD\) (do \(AB\,{\rm{//}}\,CD)\) nên ΔKAMΔKCD (g.g).

ΔADKΔCNK (câu a) nên \(\frac{{KD}}{{KN}} = \frac{{AK}}{{CK}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{KD}}{{KN}} = \frac{{KM}}{{KD}}\) nên \(K{D^2} = KM \cdot KN.\)

c) Do ΔADKΔCNK nên \(\frac{{AK}}{{CK}} = \frac{{AD}}{{CN}}\) (tỉ số cạnh tương ứng).

Do ΔKAMΔKCD nên \(\frac{{AK}}{{CK}} = \frac{{AM}}{{CD}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{AD}}{{CN}} = \frac{{AM}}{{CD}}\) hay \(\frac{9}{{CN}} = \frac{6}{{10}},\) do đó \(CN = \frac{{9 \cdot 10}}{6} = 15\) (cm).

Câu 3

A. \(\frac{1}{2}.\) 
B. \(\frac{1}{{2y}}.\)
C. \(\frac{{2x}}{{{y^2}}}.\)
D. \(\frac{{2{x^2}}}{{{y^2}}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{{x^2} - 1}}{{2x - 1}}.\)
B. \(\frac{{2x - 1}}{{{x^2} + 1}}.\)
C. \(\frac{{2x - 1}}{{{x^2} - 1}}.\)  
D. \(\frac{{{x^2} - 1}}{{2x + 1}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2x - {2^2} = 0.\) 
B. \({x^2} = 1.\)  
C. \(x - y = 0.\)  
D. \(1 - \frac{1}{x} = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP