Câu hỏi:

20/01/2026 43 Lưu

Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f'\left( x \right) = \left( {x + 1} \right){e^x},\,\,f\left( 0 \right) = 0\)\(\int {f\left( x \right)} \,{\rm{d}}x = \left( {ax + b} \right){e^x} + c\) với \[a,\,\,b,\,\,c\] là các hằng số. Khẳng định nào dưới đây đúng?

A. \(a + b = 2.\)    
B. \(a + b = 3.\) 
C. \(a + b = 1.\)           
D. \(a + b = 0.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề: \(f'\left( x \right) = \left( {x + 1} \right){e^x}\). Nguyên hàm 2 vế ta được

\(\int {f'\left( x \right)} \,dx = \int {\left( {x + 1} \right){e^x}} \,dx \Leftrightarrow f\left( x \right) = \left( {x + 1} \right){e^x} - \int {{e^x}} dx\)

\( \Rightarrow f\left( x \right) = \left( {x + 1} \right){e^x} - {e^x} + C = x{e^x} + C\)

\(f\left( 0 \right) = 0 \Rightarrow 0 \cdot {e^0} + C = 0 \Leftrightarrow C = 0 \Rightarrow f\left( x \right) = x{e^x}\)

\( \Rightarrow \int f \left( x \right)dx = \int x {e^x}dx = x{e^x} - \int {{e^x}} dx = x{e^x} - {e^x} + C = \left( {x - 1} \right){e^x} + C.\)

Suy ra \(a = 1\,;\,\,b = - 1 \Rightarrow a + b = 0.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,33

Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).

Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).

Suy ra giao điểm của \({d_1},\,\,{d_2}\)\(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)

Khoảng cách từ \(A\) đến mặt phẳng \((P)\)\(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)

Đáp án cần nhập là: \(1,33\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

  A. Biểu cảm.             
B. Tự sự.                      
C. Miêu tả.       
  D. Nghị luận.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. sometime.           
B. sometimes.           
C. some time.         
D. some times.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP