1) Tìm độ dài \[x,{\rm{ }}y\] trong mỗi trường hợp sau:
2) Cho tam giác \(ABC\) có \(AB = 4{\rm{\;cm}},\) \(AC = 5{\rm{\;cm}},\) \(BC = 6{\rm{\;cm}}.\) Các đường phân giác \(BD\) và \(CE\) cắt nhau tại \(I.\)
a) Tính \(AD,\,\,DC.\)
b) Tính các tỉ số \(\frac{{DI}}{{DB}},\,\,\frac{{BE}}{{BA}},\,\,\frac{{AD}}{{AC}}.\)
c) Tính tỉ số diện tích các tam giác \(DIE\) và \(ABC.\)
1) Tìm độ dài \[x,{\rm{ }}y\] trong mỗi trường hợp sau:
2) Cho tam giác \(ABC\) có \(AB = 4{\rm{\;cm}},\) \(AC = 5{\rm{\;cm}},\) \(BC = 6{\rm{\;cm}}.\) Các đường phân giác \(BD\) và \(CE\) cắt nhau tại \(I.\)
a) Tính \(AD,\,\,DC.\)
b) Tính các tỉ số \(\frac{{DI}}{{DB}},\,\,\frac{{BE}}{{BA}},\,\,\frac{{AD}}{{AC}}.\)
c) Tính tỉ số diện tích các tam giác \(DIE\) và \(ABC.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
|
1) ⦁ Hình 1: Tam giác \[ABC\] có \[M,\,\,N\] lần lượt là trung điểm của \[AB\] và \[AC\] nên \[MN\] là đường trung bình của tam giác. Do đó \[MN = \frac{1}{2}BC.\] Suy ra \[x = BC = 2MN = 2 \cdot 3,5 = 7\left( {{\rm{cm}}} \right).\] Vậy \(x = 7{\rm{\;cm}}.\) |
![]() Hình 1 |
|
⦁ Hình 2: Ta có: \[EF \bot MN,\,\,NP \bot MN\] nên \[EF\,{\rm{//}}\,NP.\] \(MP = MF + FP = 5 + 15 = 20.\) Tam giác \[MNP\] có \[EF\,{\rm{//}}\,NP,\] theo định lí Thalès ta có: \[\frac{{ME}}{{MN}} = \frac{{MF}}{{MP}}\] hay \(\frac{3}{y} = \frac{5}{{20}},\) suy ra \(y = \frac{{3 \cdot 20}}{5} = 12.\) Vậy \(y = 12.\) |
![]() Hình 2 |

a) Xét \(\Delta ABC\) có \(BD\) là tia phân giác của \(\widehat {ABC}\) nên \[\frac{{BA}}{{BC}} = \frac{{DA}}{{DC}}\] (tính chất đường phân giác), do đó \[\frac{{DC}}{{BC}} = \frac{{DA}}{{BA}}.\]
Theo tính chất dãy tỉ số bằng nhau ta có \[\frac{{DC}}{{BC}} = \frac{{DA}}{{BA}} = \frac{{DC + DA}}{{BC + BA}} = \frac{{AC}}{{BC + BA}} = \frac{5}{{6 + 4}} = \frac{1}{2}.\]Do đó \(AD = \frac{1}{2}AB = \frac{1}{2} \cdot 4 = 2{\rm{\;cm}};\) \(DC = \frac{1}{2}BC = \frac{1}{2} \cdot 6 = 3{\rm{\;cm}}.\)
b) Xét \(\Delta BCD\) có \(CI\) là tia phân giác của \(\widehat {DCB}\) nên \[\frac{{DI}}{{BI}} = \frac{{DC}}{{BC}} = \frac{1}{2}\] (tính chất đường phân giác), suy ra \[\frac{{DI}}{{BI + DI}} = \frac{1}{{2 + 1}},\] hay \(\frac{{DI}}{{DB}} = \frac{1}{3}.\)
Chứng minh tương tự, ta cũng có:
⦁ \(\frac{{BE}}{{EA}} = \frac{{BC}}{{AC}} = \frac{6}{5},\) suy ra \(\frac{{BE}}{{BA}} = \frac{6}{{11}}.\)
⦁ \(\frac{{AD}}{{DC}} = \frac{{AB}}{{BC}} = \frac{6}{5},\) suy ra \(\frac{{AD}}{{AC}} = \frac{2}{5}.\)
c) Gọi \({h_1},\,\,{h_2},\,\,{h_3}\) lần lượt là độ dài đường cao kẻ từ \(E\) đến \(BD;\) độ dài đường cao kẻ từ \(D\) đến \(AB;\) độ dài đường cao kẻ từ \(B\) đến \(AC.\)
Ta có: \[{S_{DIE}} = \frac{1}{2} \cdot {h_1} \cdot DI;\] \({S_{BDE}} = \frac{1}{2}{h_1} \cdot BD = \frac{1}{2}{h_2} \cdot BE;\)
\({S_{ABD}} = \frac{1}{2}{h_2} \cdot AB = \frac{1}{2}{h_3} \cdot AD;\) \({S_{ABC}} = \frac{1}{2} \cdot {h_3} \cdot AC.\)
Do đó \[\frac{{{S_{DIE}}}}{{{S_{BDE}}}} = \frac{{\frac{1}{2} \cdot {h_1} \cdot DI}}{{\frac{1}{2}{h_1} \cdot BD}} = \frac{{DI}}{{BD}} = \frac{1}{3};\] \[\frac{{{S_{BDE}}}}{{{S_{ABD}}}} = \frac{{\frac{1}{2}{h_2} \cdot BE}}{{\frac{1}{2}{h_2} \cdot AB}} = \frac{{BE}}{{AB}} = \frac{6}{{11}};\]
\[\frac{{{S_{ABD}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}{h_3} \cdot AD}}{{\frac{1}{2}{h_3} \cdot AC}} = \frac{{AD}}{{AC}} = \frac{2}{5}.\]
Khi đó \[{S_{DIE}} = \frac{1}{3}{S_{BDE}} = \frac{1}{3} \cdot \frac{6}{{11}}{S_{ABD}} = \frac{1}{3} \cdot \frac{6}{{11}} \cdot \frac{2}{5}{S_{ABC}} = \frac{4}{{55}}{S_{ABC}}.\]
Suy ra \(\frac{{{S_{DIE}}}}{{{S_{ABC}}}} = \frac{4}{{55}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Có \(5 + 3 + 4 + 2 = 14\) kết quả có thể xảy ra và các kết quả là đồng khả năng.
a) Xác suất của biến cố A là \(P\left( A \right) = \frac{2}{{14}} = \frac{1}{7}.\)
b) Xác suất của biến cố B là \(P\left( B \right) = \frac{{3 + 4}}{{14}} = \frac{7}{{14}} = \frac{1}{2}.\)
c) Xác suất của biến cố C là \(\frac{{3 + 4 + 2}}{{14}} = \frac{9}{{14}}.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Theo tính chất tỉ lệ thức ta có từ \(\frac{{AM}}{{MB}} = \frac{3}{8},\) suy ra \(\frac{{AM}}{{AM + MB}} = \frac{3}{{3 + 8}}\) hay \[\frac{{AM}}{{AB}} = \frac{3}{{11}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






