Cho tam giác \(MNP\) có \(H \in MN;\,\,K \in MP.\) Điều kiện không kết luận được \[HK\,{\rm{//}}\,NP\] là
Cho tam giác \(MNP\) có \(H \in MN;\,\,K \in MP.\) Điều kiện không kết luận được \[HK\,{\rm{//}}\,NP\] là
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Theo định lí Thalès đảo nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
Xét tam giác \(MNP,\) nếu có một trong các tỉ số \(\frac{{MH}}{{MN}} = \frac{{MK}}{{MP}};\,\,\frac{{MH}}{{HN}} = \frac{{MK}}{{KP}};\,\,\frac{{NH}}{{MN}} = \frac{{PK}}{{MP}}\) thì \(HK\,{\rm{//}}\,NP\) (định lí Thalès đảo).
Vậy ta chọn phương án C.Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
1) a) Xét \(\Delta ABC\) có \(AB \bot AC;\,\,IN \bot AC\) nên \(AB\,{\rm{//}}\,IN.\) Mà \(I\) là trung điểm của \(BC\) nên \(IN\) là đường trung bình của tam giác, do đó \(N\) là trung điểm của \(AC.\) Xét tứ giác \(ADCI\) có: \(N\) là trung điểm của \(ID,\,\,AC\) nên \(ADCI\) là hình bình hành. Lại có \(IN \bot AC\) hay \(ID \bot AC\) nên hình bình hành \(ADCI\) là hình thoi.\(\)
|
![]() |
|
b) Kẻ \(IH\,{\rm{//}}\,BK\,\,\left( {H \in CD} \right),\) mà \(I\) là trung điểm của \(BC,\) nên \(IH\) là đường trung bình của \(\Delta BKC.\) Do đó \(H\) là trung điểm của \(KC\) hay \(KH = HC\,\,\left( 1 \right)\) Xét \[\Delta DIH\] có \(N\) là trung điểm của \[DI\] và \[NK\,{\rm{//}}\,IH\] (do \[BK\,{\rm{//}}\,IH)\] nên \(NK\) là đường trung bình của \[\Delta DIH,\] suy ra \(K\)là trung điểm của \(DH\) hay \(DK = KH\,\,\left( 2 \right)\) Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(DK = KH = HC.\) Do đó \(\frac{{DK}}{{DC}} = \frac{1}{3}.\) |
![]() |
2) a) Trong \(\Delta ABD\) có: \[AM\] là phân giác của góc \(\widehat {BAD}\) nên \(\frac{{AB}}{{AD}} = \frac{{MB}}{{MD}}\) (tính chất đường phân giác trong tam giác).
Tương tự: trong \(\Delta ADC\) có \[DN\] là phân giác góc \(\widehat {ADC}\) nên \(\frac{{DC}}{{DA}} = \frac{{NC}}{{NA}}.\)
Mà \[AB = DC\] (do \[ABCD\] là hình bình hành) suy ra \(\frac{{AB}}{{AD}} = \frac{{MB}}{{MD}} = \frac{{NC}}{{NA}}.\)
b) Theo câu a, \(\frac{{MB}}{{MD}} = \frac{{NC}}{{NA}}\) suy ra \(\frac{{MB}}{{MD}} + 1 = \frac{{NC}}{{NA}} + 1\) hay \(\frac{{MB + MD}}{{MD}} = \frac{{NC + NA}}{{NA}}\)
Suy ra \(\frac{{BD}}{{MD}} = \frac{{AC}}{{NA}}\) \[\left( 1 \right)\]
Mà \[ABCD\] là hình bình hành nên hai đường chéo \[AC\] và \[BD\] cắt nhau tại trung điểm \[O\] của mỗi đường, suy ra \[BD = 2DO,\] \[AC = 2AO\] \[\left( 2 \right)\]
Từ (1) và (2) suy ra \[\frac{{2DO}}{{DM}} = \frac{{2AO}}{{AN}}\] hay \(\frac{{DO}}{{DM}} = \frac{{AO}}{{AN}}\)
Xét \(\Delta OAD\) có \(\frac{{DO}}{{DM}} = \frac{{AO}}{{AN}}\) nên \[MN\,{\rm{//}}\,AD\] (định lí Thalès đảo).
Câu 2
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Trong \[100\] sản phẩm được kiểm tra, có \[2\] sản phẩm có nhiều hơn 1 lỗi.
Xác suất thực nghiệm của biến cố “Sản phẩm có nhiều hơn 1 lỗi” là \[\frac{2}{{100}} = 0,02.\]
Câu 3
Cho hình vẽ bên, biết \[MN\,{\rm{//}}\,BC,\] \[NP\,{\rm{//}}\,AB\,.\]
Khẳng định nào sau đây là sai?
Cho hình vẽ bên, biết \[MN\,{\rm{//}}\,BC,\] \[NP\,{\rm{//}}\,AB\,.\]
Khẳng định nào sau đây là sai?

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

