Câu hỏi:

22/01/2026 2 Lưu

Chứng minh định lí là

 

A. Dùng hình vẽ để từ giả thiết suy ra kết luận.

B. Dùng đo đạc thực tế để suy ra kết luận từ giả thiết.

C. Dùng lập luận để từ giả thiết suy ra kết luận.

D. Cả A, B, C đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Chứng minh định lí là dùng lập luận đề từ giả thiết suy ra kết luận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Giả thiết của bài toán là \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

Đúng
Sai

b) \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

Đúng
Sai

c) \(\widehat {tOt'} = 180^\circ .\)

Đúng
Sai
d) Kết luận của bài toán là hai tia \(Ot,\,\,t'O\) là hai tia đối nhau.
Đúng
Sai

Lời giải

a) Đúng.

Ta có giả thiết của bài toán là: \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác

của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

b) Đúng.

\(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh nên \(\widehat {xOy} = \,\widehat {x'Oy'}\).

\(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\) nên \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

c) Đúng.

Ta có: \(\widehat {tOt'} = \widehat {{O_1}} + \widehat {xOy'} + \widehat {{O_3}} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {xOy'} = \widehat {xOy} + \widehat {xOy'} = \widehat {yOy'} = 180^\circ .\)

d) Sai.

Kết luận của bài toán là hai tia \(Ot,\,\,Ot'\) là hai tia đối nhau.

Câu 2

a) Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\].        

Đúng
Sai

b) \[\widehat {NOB} = \widehat {MOB} = \frac{{\widehat {COB}}}{2}\].

Đúng
Sai

c) \[\widehat {NOB} + \widehat {MOB} = 90^\circ \].

Đúng
Sai
d) Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].
Đúng
Sai

Lời giải

a) Đúng.

Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của

\[\widehat {COB},\,\,\widehat {BOA}\].

b) Sai.

\(ON\) là tia phân giác của \[\widehat {COB}\] nên \[\widehat {NOB} = \widehat {CON} = \frac{{\widehat {COB}}}{2}\].

c) Đúng.

\(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\] nên \[\widehat {NOB} = \frac{{\widehat {COB}}}{2}\]\[\widehat {MOB} = \frac{{\widehat {AOB}}}{2}\].

Do đó, \[\widehat {NOB} + \widehat {MOB} = \frac{{\widehat {COB}}}{2} + \frac{{\widehat {AOB}}}{2} = \frac{{\widehat {COB} + \widehat {AOB}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

d) Đúng.

Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].

Câu 3

a) \(\widehat {ACB},\,\,\widehat {CBF}\) là hai góc ở vị trí so le trong.

Đúng
Sai

b) \(ED\) không song song với \(GF.\)

Đúng
Sai

c) \(\widehat {ABF} = 90^\circ \)

Đúng
Sai
d) \(AB \bot \,GF\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu một đường thẳng cắt hai đường thẳng phân biệt thì chúng song song với nhau.

B. Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng vuông góc với nhau.

C. Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau.

D. Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) \(\widehat A + \widehat B + \widehat C = 180^\circ \).

Đúng
Sai

b) \(\widehat A = 90^\circ - \widehat C\).

Đúng
Sai

c) \(\widehat A - \widehat B = 2\widehat C\).

Đúng
Sai
d) \(\widehat A = \widehat B\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP