Câu hỏi:

22/01/2026 5 Lưu

Cho hình vẽ dưới đây biểu diễn định lí: “Hai tia phân giác của hai góc đối đỉnh là hai tia đối nhau”.

Cho hình vẽ dưới đây biểu diễn định lí: “Hai tia phân giác của hai góc đối đỉnh là hai tia đối nhau”. (ảnh 1)

Quan sát hình vẽ minh họa bài toán, khi đó:

a) Giả thiết của bài toán là \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

Đúng
Sai

b) \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

Đúng
Sai

c) \(\widehat {tOt'} = 180^\circ .\)

Đúng
Sai
d) Kết luận của bài toán là hai tia \(Ot,\,\,t'O\) là hai tia đối nhau.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Ta có giả thiết của bài toán là: \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác

của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

b) Đúng.

\(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh nên \(\widehat {xOy} = \,\widehat {x'Oy'}\).

\(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\) nên \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

c) Đúng.

Ta có: \(\widehat {tOt'} = \widehat {{O_1}} + \widehat {xOy'} + \widehat {{O_3}} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {xOy'} = \widehat {xOy} + \widehat {xOy'} = \widehat {yOy'} = 180^\circ .\)

d) Sai.

Kết luận của bài toán là hai tia \(Ot,\,\,Ot'\) là hai tia đối nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\].        

Đúng
Sai

b) \[\widehat {NOB} = \widehat {MOB} = \frac{{\widehat {COB}}}{2}\].

Đúng
Sai

c) \[\widehat {NOB} + \widehat {MOB} = 90^\circ \].

Đúng
Sai
d) Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].
Đúng
Sai

Lời giải

a) Đúng.

Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của

\[\widehat {COB},\,\,\widehat {BOA}\].

b) Sai.

\(ON\) là tia phân giác của \[\widehat {COB}\] nên \[\widehat {NOB} = \widehat {CON} = \frac{{\widehat {COB}}}{2}\].

c) Đúng.

\(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\] nên \[\widehat {NOB} = \frac{{\widehat {COB}}}{2}\]\[\widehat {MOB} = \frac{{\widehat {AOB}}}{2}\].

Do đó, \[\widehat {NOB} + \widehat {MOB} = \frac{{\widehat {COB}}}{2} + \frac{{\widehat {AOB}}}{2} = \frac{{\widehat {COB} + \widehat {AOB}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

d) Đúng.

Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].

Câu 2

a) \(\widehat {ACB},\,\,\widehat {CBF}\) là hai góc ở vị trí so le trong.

Đúng
Sai

b) \(ED\) không song song với \(GF.\)

Đúng
Sai

c) \(\widehat {ABF} = 90^\circ \)

Đúng
Sai
d) \(AB \bot \,GF\).
Đúng
Sai

Lời giải

a) Đúng.

Nhận thấy \(\widehat {ACB},\,\,\widehat {CBF}\) là hai góc ở vị trí so le trong.

b) Sai.

\(\widehat {ACB} = \widehat {CBF}\) và hai góc ở vị trí so le trong nên \(ED\parallel FG.\)

c) Đúng.

\(ED\parallel FG\) nên \(\widehat {EAB} = \widehat {ABF} = 90^\circ \) (so le trong).

d) Đúng.

\(\widehat {ABF} = 90^\circ \) nên \(AB \bot \,GF\).

 

Câu 4

a) \(\widehat A + \widehat B + \widehat C = 180^\circ \).

Đúng
Sai

b) \(\widehat A = 90^\circ - \widehat C\).

Đúng
Sai

c) \(\widehat A - \widehat B = 2\widehat C\).

Đúng
Sai
d) \(\widehat A = \widehat B\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP