Câu hỏi:

23/01/2026 6 Lưu

Cho hình bên, biết \(DE\,{\rm{//}}\,AC.\) Độ dài đoạn thẳng \(DE\) (làm tròn kết quả đến chữ số thập phân thứ hai) là

Cho hình bên, biết DE song song AC. Độ dài đoạn thẳng DE (làm tròn kết quả đến chữ số thập phân thứ hai) là (ảnh 1)

A. \(x \approx 7,15{\rm{\;cm}}{\rm{.}}\)                       
B. \[x \approx 7,10{\rm{\;cm}}{\rm{.}}\]
C. \(x \approx 7,14{\rm{\;cm}}{\rm{.}}\)    
D. \(x \approx 7,142{\rm{\;cm}}{\rm{.}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Xét \(\Delta ABC\) có \(DE\,{\rm{//}}\,AC,\) theo hệ quả định lí Thalès ta có: \(\frac{{BD}}{{BA}} = \frac{{DE}}{{AC}}.\)

Suy ra \(\frac{5}{{5 + 2}} = \frac{{DE}}{{10}},\) do đó \(DE = \frac{{5 \cdot 10}}{7} = \frac{{50}}{7} \approx 7,14{\rm{\;cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Hướng dẫn giải

a) Vì 1 hải lí bằng \[1,852\] km nên ta có: \[y = 1,852x.\]

Giá trị âm của \[x\] trong trường hợp này không có ý nghĩa, vì chiều dài là một đại lượng không âm.

b) Ta có:

Khi \[x = 0\] thì \[y = 0.\]

Khi \[x = 5\] thì \[y = 9,26.\]

Đồ thị của hàm số \[y = 1,852x\] (với \[x\] không âm) là một phần đường thẳng như hình bên, đi qua các điểm \[\left( {0;{\rm{ }}0} \right)\] và \[\left( {5;{\rm{ }}9,26} \right).\]

Hải lí (còn gọi là dặm biển) là một đơn vị chiều dài hàng hải và 1 hải lí bằng 1,852 km.  a) Viết công thức biểu thị y (km) theo x (hải lí). Giá trị âm của x có ý nghĩa gì trong tình huống này không? Giải thích. (ảnh 1)

c) Một hành trình đi biển dài 350 hải lí. Tức là \[x = 350.\]

Khi đó, hành trình dài số km là: \[y = 1,852 \cdot 350 = 648,2\] (km).

Lời giải

Hướng dẫn giải

 a) Gọi \(A\left( {{x_A};\,\,{y_A}} \right)\) là giao điểm của hai đường thẳng \(\left( {{d_1}} \right):y = 2x - 1\) và \(\left( {{d_2}} \right):y = x + 2.\)

Vì \(A\) thuộc đường thẳng \(\left( {{d_1}} \right):y = 2x - 1\) nên ta có \[{y_A} = 2{x_A} - 1.\] Khi đó \(A\left( {{x_A};\,2{x_A} - 1} \right).\)

Vì \(A\) thuộc đường thẳng \[\left( {{d_2}} \right):y = x + 2\] nên ta có \(2{x_A} - 1 = {x_A} + 2,\) suy ra \({x_A} = 3.\)

Từ đó ta có \({y_A} = 2{x_A} - 1 = 2 \cdot 3 - 1 = 5.\)

Vì vậy ta được \(A\left( {3;5} \right).\)

b) Đường thẳng \(\left( {{d_3}} \right):y = ax + b\,\,\left( {a \ne 0} \right)\) song song với \(\left( {{d_1}} \right):y = 2x - 1\) nên ta có \(a = 2\) (thỏa mãn \(a \ne 0)\) và \(b \ne  - 1.\) Ta được hàm số \(y = 2x + b\) \(\left( {b \ne  - 1} \right).\)

Xét điểm \(B\) có hoành độ bằng \( - 1\) nên ta gọi \(B\left( { - 1;\,{y_B}} \right).\)

Điểm \(B\) thuộc đường thẳng \(\left( {{d_2}} \right):y = x + 2\) nên ta có \({y_B} =  - 1 + 2 = 1.\) Vì vậy \(B\left( { - 1;1} \right).\)

Đường thẳng \(\left( {{d_3}} \right):y = 2x + b\) \(\left( {b \ne  - 1} \right)\) cắt đường thẳng \(\left( {{d_2}} \right):y = x + 2\) tại điểm \(B\left( { - 1;1} \right)\) nên thay \(x =  - 1,\,\,y = 1\) vào hàm số \(y = 2x + b,\) ta được:

\(1 = 2 \cdot \left( { - 1} \right) + b,\) suy ra \(b = 3\) (thỏa mãn \(b \ne  - 1).\)

Vậy \(a = 2\) và \(b = 3.\)

Câu 3

A. \(y = 4 - x.\)    
B. \(y = \frac{{1 + 2x}}{2}.\) 
C. \(y = {x^2} + x.\)
D. \(y = \frac{1}{2}x - 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Góc nhọn.
B. Góc vuông.
C. Góc tù.
D. Góc bẹt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{5}{9}.\)  
B. \(\frac{9}{5}.\)
C. \(\frac{9}{{14}}.\) 
D. \[\frac{{14}}{9}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP