Câu hỏi:

23/01/2026 29 Lưu

Cho hình bên, biết \(DE\,{\rm{//}}\,AC.\) Độ dài đoạn thẳng \(DE\) (làm tròn kết quả đến chữ số thập phân thứ hai) là

Cho hình bên, biết DE song song AC. Độ dài đoạn thẳng DE (làm tròn kết quả đến chữ số thập phân thứ hai) là (ảnh 1)

A. \(x \approx 7,15{\rm{\;cm}}{\rm{.}}\)                       
B. \[x \approx 7,10{\rm{\;cm}}{\rm{.}}\]
C. \(x \approx 7,14{\rm{\;cm}}{\rm{.}}\)    
D. \(x \approx 7,142{\rm{\;cm}}{\rm{.}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Xét \(\Delta ABC\) có \(DE\,{\rm{//}}\,AC,\) theo hệ quả định lí Thalès ta có: \(\frac{{BD}}{{BA}} = \frac{{DE}}{{AC}}.\)

Suy ra \(\frac{5}{{5 + 2}} = \frac{{DE}}{{10}},\) do đó \(DE = \frac{{5 \cdot 10}}{7} = \frac{{50}}{7} \approx 7,14{\rm{\;cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1) ⦁ Hình 1:

Ta có \(MB = AB - AM = 7 - 2 = 5.\)

Tam giác \(ABC\) có \(MN\,{\rm{//}}\,AB,\) theo định lí Thalès ta có:

\(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) hay \(\frac{2}{5} = \frac{x}{6},\) suy ra \(x = \frac{{12}}{5}.\)

Vậy \(x = \frac{{12}}{5}.\)  

2) Cho tứ giác ABCD. Gọi E,F, theo thứ tự là trung điểm của AD,BC, AC. Chứng minh rằng:  a) EI song song CD và IF song song AB  b) \[EF lớn hơn hoặc bằngAB + CD/2 (ảnh 3)

Hình 1

⦁ Hình 2:

Xét tam giác \[ABC\] có \[AD\] là phân giác trong góc \[\widehat {BAC}\] (do \[\widehat {BAD} = \widehat {CAD}),\] nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}},\) hay \[\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}}\]

Do đó \[\frac{3}{5} = \frac{{DC}}{{8,5}},\] suy ra \[DC = \frac{{8,5 \cdot 3}}{5} = 5,1.\]

Khi đó \(x = BC = DB + DC = 3 + 5,1 = 8,1.\)

2) Cho tứ giác ABCD. Gọi E,F, theo thứ tự là trung điểm của AD,BC, AC. Chứng minh rằng:  a) EI song song CD và IF song song AB  b) \[EF lớn hơn hoặc bằngAB + CD/2 (ảnh 4)

Hình 2

2)
2) Cho tứ giác ABCD. Gọi E,F, theo thứ tự là trung điểm của AD,BC, AC. Chứng minh rằng:  a) EI song song CD và IF song song AB  b) \[EF lớn hơn hoặc bằngAB + CD/2 (ảnh 5)

a) Xét \(\Delta ADC\) có \(E,\,\,I\) lần lượt là trung điểm của \(AD,\,\,AC\) nên \[EI\] là đường trung bình của \(\Delta ADC.\)

Do đó \(EI\,{\rm{//}}\,CD\) và \(EI = \frac{{C{\rm{D}}}}{2}.\)

Xét \(\Delta ABC\) có \(I,\,\,F\) lần lượt là trung điểm của \(AC,\,\,BC\) nên \[IF\] là đường trung bình của \(\Delta ABC.\)

Do đó \(IF\,{\rm{//}}\,AB\) và \(IF = \frac{{AB}}{2}.\)

b) Trong \(\Delta EIF\) ta có: \(EF \le EI + IF\) (dấu "=" xảy ra khi \[E,\,\,I,\,\,F\] thẳng hàng)

Mà \(EI = \frac{{C{\rm{D}}}}{2};\,\,IF = \frac{{AB}}{2}\) (chứng minh ở câu a)

Do đó \[EF \le \frac{{AB + CD}}{2}.\]

Vậy \[EF \le \frac{{AB + CD}}{2}\] (dấu bằng xảy ra khi \(AB\,{\rm{//}}\,CD).\)

Lời giải

 Hướng dẫn giải

a) Vì 1 hải lí bằng \[1,852\] km nên ta có: \[y = 1,852x.\]

Giá trị âm của \[x\] trong trường hợp này không có ý nghĩa, vì chiều dài là một đại lượng không âm.

b) Ta có:

Khi \[x = 0\] thì \[y = 0.\]

Khi \[x = 5\] thì \[y = 9,26.\]

Đồ thị của hàm số \[y = 1,852x\] (với \[x\] không âm) là một phần đường thẳng như hình bên, đi qua các điểm \[\left( {0;{\rm{ }}0} \right)\] và \[\left( {5;{\rm{ }}9,26} \right).\]

Hải lí (còn gọi là dặm biển) là một đơn vị chiều dài hàng hải và 1 hải lí bằng 1,852 km.  a) Viết công thức biểu thị y (km) theo x (hải lí). Giá trị âm của x có ý nghĩa gì trong tình huống này không? Giải thích. (ảnh 1)

c) Một hành trình đi biển dài 350 hải lí. Tức là \[x = 350.\]

Khi đó, hành trình dài số km là: \[y = 1,852 \cdot 350 = 648,2\] (km).

Câu 4

A. \(y = 4 - x.\)    
B. \(y = \frac{{1 + 2x}}{2}.\) 
C. \(y = {x^2} + x.\)
D. \(y = \frac{1}{2}x - 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a =  - \frac{1}{4}.\) 
B. \(a =  - \frac{1}{2}.\)  
C. \[a =  - 1.\]  
D. \(a = \frac{1}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{5}{9}.\)  
B. \(\frac{9}{5}.\)
C. \(\frac{9}{{14}}.\) 
D. \[\frac{{14}}{9}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP