Phần IV (3 điểm). Thí sinh trả lời từ câu 5 đến câu 7. Đối với mỗi câu, thí sinh viết quá trình và kết quả suy luận.
(1 điểm). Giải phương trình: \[{2^{{x^2} + x}} - 4 \cdot {2^{{x^2} - x}} - {2^{2x}} + 4 = 0\].
Phần IV (3 điểm). Thí sinh trả lời từ câu 5 đến câu 7. Đối với mỗi câu, thí sinh viết quá trình và kết quả suy luận.
(1 điểm). Giải phương trình: \[{2^{{x^2} + x}} - 4 \cdot {2^{{x^2} - x}} - {2^{2x}} + 4 = 0\].
Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:
Ta có: \[{2^{{x^2} + x}} - 4 \cdot {2^{{x^2} - x}} - {2^{2x}} + 4 = 0 \Leftrightarrow {2^{{x^2} - x}} \cdot {2^{2x}} - 4 \cdot {2^{{x^2} - x}} - {2^{2x}} + 4 = 0\]
\[ \Leftrightarrow {2^{{x^2} - x}} \cdot \left( {{2^{2x}} - 4} \right) - \left( {{2^{2x}} - 4} \right) = 0 \Leftrightarrow \left( {{2^{2x}} - 4} \right)\left( {{2^{{x^2} - x}} - 1} \right) = 0\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{2^{2x}} = 4}\\{{2^{{x^2} - x}} = 1}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = 2}\\{{x^2} - x = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 0}\end{array}.} \right.} \right.} \right.\]
Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ {0\,;\,1} \right\}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Sai. Ta có \(y' = f'\left( x \right) = {\left( {\ln x - 2{x^2}} \right)^\prime } = \frac{1}{x} - 4x \ge 0\) khi \(x \in \left( {0;\frac{1}{2}} \right]\).
Do đó hàm số đồng biến trên khoảng \(\left( {0;\frac{1}{2}} \right)\).
b) Đúng. Ta có \(f\left( 1 \right) = \ln 1 - 2 \cdot {1^2} = - 2\); \(f\left( {{e^2}} \right) = \ln {e^2} - 2 \cdot {\left( {{e^2}} \right)^2} = 2 - 2 \cdot {e^4}\).
c) Sai. Ta có . Vậy hàm số có một điểm cực trị.
d) Sai. Ta có \(f\left( 1 \right) = - 2;\,f\left( {{e^2}} \right) = 2 - 2{e^4}\). Vậy \(\left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = 2 - 2{e^4}\\\mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2\end{array} \right.\).
Nên \(\mathop {\min }\limits_{\left[ {1\,;{e^2}} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2{e^4}\).
Câu 2
Lời giải
Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 2x,\,y = - 2{x^2} + 2x\] và hai đường thẳng \[x = 0,\,x = 1\] là \[\int\limits_0^1 {\left| {\left( {{x^2} - 2x} \right) - \left( { - 2{x^2} + 2x} \right)} \right|} \,{\rm{d}}x = 1\]. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

