Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \left| {{x^5} + 2{x^4} - m{x^2} + 3x - 20} \right|\) nghịch biến trên khoảng \(\left( { - \infty \,;\,\, - 2} \right)\)(nhập đáp án vào ô trống)?
Đáp án __
Quảng cáo
Trả lời:
Đặt \(f\left( x \right) = {x^5} + 2{x^4} - m{x^2} + 3x - 20 \Rightarrow y = \left| {f\left( x \right)} \right| \Rightarrow y' = \frac{{f'\left( x \right) \cdot f\left( x \right)}}{{\left| {f\left( x \right)} \right|}}\)
Yêu cầu bài toán \( \Leftrightarrow y' \le 0\,;\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right) \Leftrightarrow f'\left( x \right) \cdot f\left( x \right) \le 0\,;\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right).\)
• TH1: \(\left\{ {\begin{array}{*{20}{l}}{f'\left( x \right) \ge 0}\\{f\left( x \right) \le 0}\end{array};\forall x \in \left( { - \infty \,;\,\, - 2} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{5{x^4} + 8{x^3} - 2mx + 3 \ge 0}\\{f\left( { - 2} \right) \le 0}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2mx \le 5{x^4} + 8{x^3} + 3;\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{{{\left( { - 2} \right)}^5} + 2 \cdot {{\left( { - 2} \right)}^4} - m \cdot {{\left( { - 2} \right)}^2} + 3 \cdot \left( { - 2} \right) - 20 \le 0}\end{array}} \right.\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \ge \frac{{5{x^4} + 8{x^3} + 3}}{x};\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{ - 4m - 26 \le 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \ge \mathop {\max }\limits_{\left( { - \infty \,;\,\, - 2} \right)} \left( {5{x^3} + 8{x^2} + \frac{3}{x}} \right)}\\{ - 4m \le 26}\end{array}} \right.} \right.\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \ge - \frac{{19}}{2}}\\{m \ge - \frac{{13}}{2}}\end{array} \Leftrightarrow m \ge - \frac{{19}}{4}} \right.\) mà \(m\) nguyên âm nên \[m \in \left\{ { - 4\,;\,\, - 3\,;\,\, - 2\,;\,\, - 1} \right\}.\]
• TH2: \(\left\{ {\begin{array}{*{20}{l}}{f'\left( x \right) \le 0}\\{f\left( x \right) \ge 0}\end{array};\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{5{x^4} + 8{x^3} - 2mx + 3 \le 0}\\{f\left( { - 2} \right) \ge 0}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2mx \ge 5{x^4} + 8{x^3} + 3;\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{{{\left( { - 2} \right)}^5} + 2 \cdot {{\left( { - 2} \right)}^4} - m \cdot {{\left( { - 2} \right)}^2} + 3 \cdot \left( { - 2} \right) - 20 \ge 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \le \frac{{5{x^4} + 8{x^3} + 3}}{x};\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{ - 4m - 26 \ge 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \le \mathop {\min }\limits_{\left( { - \infty \,;\,\, - 2} \right)} \left( {5{x^3} + 8{x^2} + \frac{3}{x}} \right)}\\{ - 4m \ge 26}\end{array}} \right.\)\( \Leftrightarrow m \in \emptyset .\)
Vậy có tất cả 4 giá trị nguyên của tham số \(m\) cần tìm.
Đáp án cần nhập là: 4.Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Phương thức biểu đạt chính của đoạn trích là tự sự. Chọn A.
Câu 3
A. innovation.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.