Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 4a\,,\,\,BC = 2a.\) Đỉnh \(S\) cách đều các đỉnh \[A,\,\,B,\,\,C,\,\,D.\] Biết góc giữa mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng \(60^\circ .\) Thể tích khối chóp đã cho bằng:
Quảng cáo
Trả lời:
Gọi \(O\) là tâm của hình chữ nhật \(ABCD\).
Suy ra \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot CD\).
Gọi \(M\) là trung điểm của \(CD \Rightarrow OM \bot CD\)
Do đó \(CD \bot \left( {SMO} \right)\) mà \(\left\{ {\begin{array}{*{20}{l}}{\left( {SMO} \right) \cap \left( {SCD} \right) = SM}\\{\left( {SMO} \right) \cap \left( {ABCD} \right) = OM}\end{array}} \right.\)
Suy ra \(\left( {\left( {SCD} \right),\,\,\left( {ABCD} \right)} \right) = \left( {SM,OM} \right) = \widehat {SMO} = 60^\circ .\)Ta có \(OM = \frac{1}{2}BC = \frac{1}{2} \cdot 2a = a \Rightarrow SO = OM \cdot \tan \widehat {SMO}\)
\( \Rightarrow SO = \sqrt 3 a \Rightarrow {V_{S \cdot ABCD}} = \frac{1}{3} \cdot SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot \sqrt 3 a \cdot 8{a^2} = \frac{{8\sqrt 3 {a^3}}}{3}.\) Chọn A.

Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Phương thức biểu đạt chính của đoạn trích là tự sự. Chọn A.
Câu 3
A. innovation.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.