Cho giả thiết – kết luận ở bảng dưới đây:
Giả thiết
\(t \cap m = A;\,\,t \cap n = B\)
\(\widehat {mAt} = \widehat {nAB}\)
Kết luận
\(m\parallel n\)
Phát biểu bằng lời ta được:
(1). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc đồng vị bằng nhau thì hai đường thẳng \(m,\,\,n\) vuông góc với nhau.
(2). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc đồng vị bằng nhau thì hai đường thẳng \(m,\,\,n\) song song với nhau.
(3). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc so le trong bằng nhau thì hai đường thẳng \(m,\,\,n\) song song với nhau.
(4). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc so le trong bằng nhau thì hai đường thẳng \(m,\,\,n\) vuông góc với nhau.
Hỏi khẳng định số mấy thích hợp nhất với bảng giả thiết – kết luận đã cho?
Cho giả thiết – kết luận ở bảng dưới đây:
|
Giả thiết |
\(t \cap m = A;\,\,t \cap n = B\) \(\widehat {mAt} = \widehat {nAB}\) |
|
Kết luận |
\(m\parallel n\) |
Phát biểu bằng lời ta được:
(1). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc đồng vị bằng nhau thì hai đường thẳng \(m,\,\,n\) vuông góc với nhau.
(2). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc đồng vị bằng nhau thì hai đường thẳng \(m,\,\,n\) song song với nhau.
(3). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc so le trong bằng nhau thì hai đường thẳng \(m,\,\,n\) song song với nhau.
(4). Nếu đường thẳng \(t\) cắt hai đường thẳng \(m,\,\,n\) và trong số các góc tạo thành các cặp góc so le trong bằng nhau thì hai đường thẳng \(m,\,\,n\) vuông góc với nhau.
Hỏi khẳng định số mấy thích hợp nhất với bảng giả thiết – kết luận đã cho?
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 2.
Ta có hình vẽ minh họa cho giả thiết – kết luận trên như sau:

Do đó, khẳng định phù hợp với giả thiết – kết luận đã cho là khẳng định số (2).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. “Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba”.
B. “Chúng song song với nhau”.
C. “Hai đường thẳng phân biệt cùng vuông góc”.
Lời giải
Đáp án đúng là: A
Phần giải thiết của định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau” là ‘Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba”.
Câu 2
A. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng vuông góc với nhau.
B. Một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
C. Hai góc bằng nhau thì đối đỉnh.
Lời giải
Đáp án đúng là: D
Khẳng định là định lí là: “Hai góc đối đỉnh thì bằng nhau”.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Nếu \(a\parallel b;{\rm{ }}b\parallel c\) thì \(a \bot c.\)
B. Nếu \(a \bot b;{\rm{ }}b \bot c\) thì \(a \bot c.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(\widehat A + \widehat B + \widehat C = 180^\circ \).
b) \(\widehat A = 90^\circ - \widehat C\).
c) \(\widehat A - \widehat B = 2\widehat C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\].
b) \[\widehat {NOB} = \widehat {MOB} = \frac{{\widehat {COB}}}{2}\].
c) \[\widehat {NOB} + \widehat {MOB} = 90^\circ \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

