Cho đường thẳng \(c\) cắt hai đường thẳng \(a\) và \(b\) phân biệt và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì
Cho đường thẳng \(c\) cắt hai đường thẳng \(a\) và \(b\) phân biệt và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì
A. \(a\) song song với \(b.\)
B. \(a\) cắt \(b.\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Cho đường thẳng \(c\) cắt hai đường thẳng \(a\) và \(b\) phân biệt và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì \(a\) song song với \(b.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù.
b) \(\widehat {CBz} = 70^\circ \).
c) \(Oy\) song song với \(Az\).
Lời giải
a) Đúng.
Nhận thấy \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù nên ta có \(\widehat {CBz} + \widehat {ABC} = 180^\circ \). Do đó, ý a) đúng.
b) Đúng.
Suy ra \(\widehat {CBz} = 180^\circ - \widehat {CBA} = 180^\circ - 110^\circ = 70^\circ \). Do đó, ý b) đúng.
Ta có \(\widehat {xAz} = \widehat {xOy} = 70^\circ \).
c) Đúng.
Mà hai góc ở vị trí đồng vị nên \(Oy\parallel Az\). Do đó, ý c) đúng.
d) Sai.
Vì \(Oy\parallel Az\) nên \(\widehat {OCB} = \widehat {CBz} = 70^\circ \) (so le trong). Do đó, ý d) sai.
Câu 2
a) \(\widehat {aAx'}\) và \(\widehat {ABC}\) là hai góc so le trong.
b) \(x'x\parallel yy'.\)
c) \(\widehat {BAx'} = 120^\circ .\)
Lời giải
a) Sai.
Nhận thấy, \(\widehat {aAx'}\) và \(\widehat {ABC}\) là hai góc đồng vị. Do đó, ý a) là sai.
b) Đúng.
Ta có: \(\widehat {aAx'} = \widehat {ABC} = 60^\circ \), đồng thời hai góc ở vị trí đồng vị nên \(x'x\parallel yy'.\) Do đó, ý b) là đúng.
c) Đúng.
Có \(\widehat {aAx'}\) và \(\widehat {BAx'}\) nên \(\widehat {aAx'} + \widehat {BAx'} = 180^\circ \), suy ra \(\widehat {BAx'} = 180^\circ - \widehat {aAx'} = 180^\circ - 60^\circ = 120^\circ \).
Do đó, ý c) là đúng.
d) Đúng.
Có tia \(AC\) là tia phân giác của \(\widehat {BAx'}\) nên \(\widehat {BAC} = \widehat {CAx'} = \frac{{\widehat {BAx'}}}{2} = 60^\circ \).
Ta có \(x'x\parallel yy'\) nên \(\widehat {BAx} = \widehat {ABC} = 60^\circ \) (so le trong).
Suy ra \(\widehat {BAx} = \widehat {BAC} = 60^\circ \).
Mà tia \(AB\) nằm trong \(\widehat {xAC}\) nên \(AB\) là tia phân giác của \(\widehat {xAC}\). Do đó, ý d) là đúng.
Câu 3
a) \(\widehat {DAB} = 65^\circ \).
b) \(\widehat {DAC}\) và \(\widehat {DAE}\) là hai góc kề bù.
c) \(AD\) là tia phân giác của \(\widehat {EAB}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Qua một điểm ở ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.
B. Qua một điểm ở ngoài một đường thẳng, có vô số đường thẳng song song với đường thẳng đó.
C. Qua một điểm ở ngoài một đường thẳng, không kẻ được đường thẳng song song với đường thẳng đó.
D. Qua một điểm ở ngoài một đường thẳng, kẻ được ít nhất một đường thẳng song song với đường thẳng đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(\widehat {xAC}\) và \(\widehat {BAC}\) là hai góc kề nhau.
b) \(\widehat {CAy} = 126^\circ \).
c) \(\widehat {yAB} = 72^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(\widehat {{A_1}}\) và \(\widehat {{A_2}}\) là hai góc kề bù.
b) \(\widehat {{A_1}} = 60^\circ \).
c) \(\widehat {{A_1}}\) và \(\widehat {xOy}\) ở vị trí so le trong.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





