Có bao nhiêu cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thoả mãn \({2022^{ - 1}} \le y \le 2022\) và \(2 \cdot {3^{x - 1}} - {\log _3}\left( {{3^{x - 2}} + 2y} \right) = 6y - x + 1\,\)(nhập đáp án vào ô trống)?
Đáp án ___
Quảng cáo
Trả lời:
Đặt \({\log _3}\left( {{3^{x - 2}} + 2y} \right) = a \Leftrightarrow {3^{x - 2}} + 2y = {3^a}\)(1) và \[2 \cdot {3^{x - 1}} - a = 6y - x + 1\].
Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{3^{x - 2}} + 2y = {3^a}}\\{2 \cdot {3^{x - 1}} - a = 6y - x + 1}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3 \cdot {3^a} = {3^{x - 1}} + 6y}\\{2 \cdot {3^{x - 1}} - a = 6y - x + 1}\end{array}} \right.\).
Lấy (1) trừ (2), ta được \(3 \cdot {3^a} - 2 \cdot {3^{x - 1}} + a = {3^{x - 1}} + x - 1\)
\( \Leftrightarrow {3^{a + 1}} + a = {3^x} + x - 1\)\( \Leftrightarrow f\left( a \right) = f\left( {x - 1} \right)\) với \(f(t) = {3^{t + 1}} + t\) là hàm số đồng biến.
Do đó \(a = x - 1\) thay vào (1), ta được \({3^{x - 2}} + 2y = {3^{x - 1}} \Leftrightarrow 2y = \frac{2}{9} \cdot {3^x} \Leftrightarrow y = {3^{x - 2}}\).
Mà \({2022^{ - 1}} \le y \le 2022 \Rightarrow {2022^{ - 1}} \le {3^{x - 2}} \le 2022\)\( \Leftrightarrow - {\log _3}2022 \le x - 2 \le {\log _3}2022\)
\( \Leftrightarrow - 4,93 \le x \le 8,932\) và \(x \in \mathbb{Z}\) có 13 giá trị nguyên \(x\) thỏa mãn.
Vậy có tất cả 13 cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thỏa mãn yêu cầu bài toán.
Đáp án cần nhập là: 13.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn hệ trục toạ độ như hình vẽ.

Theo đề ta có phương trình của elip là \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1.\)
Gọi \[M,\,\,N\] lần lượt là giao điểm của dầu với elip.
Gọi \({S_1}\) là diện tích của hình elip ta có \({S_1} = \pi ab = \pi \cdot \frac{1}{2} \cdot \frac{2}{5} = \frac{\pi }{5}.\)
Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi elip và đường thẳng \[MN\]
Theo đề bài chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m\] nên ta có phương trình của đường thẳng \[MN\] là \(y = \frac{1}{5}.\)
Mặt khác, từ phương trình \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1\), ta có \(y = \frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} .\)
Do đường thẳng \(y = \frac{1}{5}\) cắt elip tại hai đỉnh \[M,\,\,N\] có hoành độ lần lượt là \( - \frac{{\sqrt 3 }}{4}\) và \(\frac{{\sqrt 3 }}{4}\) nên
\({S_2} = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {\frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} - \frac{1}{5}} \right)} \,{\rm{d}}x = \frac{4}{5}\int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x - \frac{{\sqrt 3 }}{{10}}{\rm{. }}\)
Tính \(I = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x\). Đặt \(x = \frac{1}{2}\sin t \Rightarrow {\rm{d}}x = \frac{1}{2}\cos t\;{\rm{d}}t.\)
Đổi cận: Khi \(x = - \frac{{\sqrt 3 }}{4}\) thì \(t = - \frac{\pi }{3}\); khi \(x = \frac{{\sqrt 3 }}{4}\) thì \(t = \frac{\pi }{3}.\)
\(I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{1}{2} \cdot \frac{1}{2}{{\cos }^2}t\;{\rm{d}}t} = \frac{1}{8}\int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {1 + \cos 2t} \right){\rm{d}}t} = \frac{1}{8}\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right).\)
Do đó \({S_2} = \frac{4}{5} \cdot \frac{1}{8}{\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right)^3} - \frac{{\sqrt 3 }}{{10}} = \frac{\pi }{{15}} - \frac{{\sqrt 3 }}{{20}}.\)
Thể tích của dầu trong thùng là \(V = \left( {\frac{\pi }{5} - \frac{\pi }{{15}} + \frac{{\sqrt 3 }}{{20}}} \right) \cdot 3 = 1,52\).
Vậy \(V = 1,52\;\,{{\rm{m}}^3}.\) Chọn D.
Câu 2
Lời giải
TH1: Chọn 3 học sinh nữ có \(C_{15}^3 = 455\) (cách).
TH2: Chọn 2 học sinh nữ, 1 học sinh nam có \(C_{15}^2 \cdot C_{25}^1 = 2\,\,625\) (cách).
Số cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam là:
\[2\,\,625 + 455 = 3\,\,080\] (cách). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

