Nghiệm nhỏ nhất của phương trình \(2\cos 2x - 1 = 0\) trong đoạn \(\left[ {0^\circ ;180^\circ } \right]\) là \(\alpha ^\circ \). Giá trị của α là (nhập đáp án vào ô trống):
Đáp án ___
Quảng cáo
Trả lời:
Phương trình \(2\cos 2x - 1 = 0\)\( \Leftrightarrow \cos 2x = \frac{1}{2}\)
\( \Leftrightarrow \left[ \begin{array}{l}2x = 60^\circ + k360^\circ \\2x = - 60^\circ + k360^\circ \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 30^\circ + k180^\circ \\x = - 30^\circ + k180^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Xét \(x \in \left[ {0^\circ ;180^\circ } \right]\) \( \Leftrightarrow \left[ \begin{array}{l}0^\circ \le 30^\circ + k180^\circ \le 180^\circ \\0 \le - 30^\circ + k180^\circ \le 180^\circ \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\frac{{ - 1}}{6} \le k \le \frac{5}{6}\\\frac{1}{6} \le k \le \frac{7}{6}\end{array} \right.\).
Mà \(k \in \mathbb{Z}\), suy ra \(\left[ \begin{array}{l}k = 0\\k = 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 30^\circ \\x = 150^\circ \end{array} \right.\).
Vậy nghiệm nhỏ nhất của phương trình \(2\cos 2x - 1 = 0\) trong đoạn \(\left[ {0^\circ ;180^\circ } \right]\) là \(x = 30^\circ \).
Đáp án cần nhập là: 30.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn hệ trục toạ độ như hình vẽ.

Theo đề ta có phương trình của elip là \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1.\)
Gọi \[M,\,\,N\] lần lượt là giao điểm của dầu với elip.
Gọi \({S_1}\) là diện tích của hình elip ta có \({S_1} = \pi ab = \pi \cdot \frac{1}{2} \cdot \frac{2}{5} = \frac{\pi }{5}.\)
Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi elip và đường thẳng \[MN\]
Theo đề bài chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m\] nên ta có phương trình của đường thẳng \[MN\] là \(y = \frac{1}{5}.\)
Mặt khác, từ phương trình \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1\), ta có \(y = \frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} .\)
Do đường thẳng \(y = \frac{1}{5}\) cắt elip tại hai đỉnh \[M,\,\,N\] có hoành độ lần lượt là \( - \frac{{\sqrt 3 }}{4}\) và \(\frac{{\sqrt 3 }}{4}\) nên
\({S_2} = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {\frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} - \frac{1}{5}} \right)} \,{\rm{d}}x = \frac{4}{5}\int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x - \frac{{\sqrt 3 }}{{10}}{\rm{. }}\)
Tính \(I = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x\). Đặt \(x = \frac{1}{2}\sin t \Rightarrow {\rm{d}}x = \frac{1}{2}\cos t\;{\rm{d}}t.\)
Đổi cận: Khi \(x = - \frac{{\sqrt 3 }}{4}\) thì \(t = - \frac{\pi }{3}\); khi \(x = \frac{{\sqrt 3 }}{4}\) thì \(t = \frac{\pi }{3}.\)
\(I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{1}{2} \cdot \frac{1}{2}{{\cos }^2}t\;{\rm{d}}t} = \frac{1}{8}\int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {1 + \cos 2t} \right){\rm{d}}t} = \frac{1}{8}\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right).\)
Do đó \({S_2} = \frac{4}{5} \cdot \frac{1}{8}{\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right)^3} - \frac{{\sqrt 3 }}{{10}} = \frac{\pi }{{15}} - \frac{{\sqrt 3 }}{{20}}.\)
Thể tích của dầu trong thùng là \(V = \left( {\frac{\pi }{5} - \frac{\pi }{{15}} + \frac{{\sqrt 3 }}{{20}}} \right) \cdot 3 = 1,52\).
Vậy \(V = 1,52\;\,{{\rm{m}}^3}.\) Chọn D.
Câu 2
Lời giải
TH1: Chọn 3 học sinh nữ có \(C_{15}^3 = 455\) (cách).
TH2: Chọn 2 học sinh nữ, 1 học sinh nam có \(C_{15}^2 \cdot C_{25}^1 = 2\,\,625\) (cách).
Số cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam là:
\[2\,\,625 + 455 = 3\,\,080\] (cách). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
