Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) thỏa mãn \(\left( {1 + {x^2}} \right) \cdot f'\left( x \right) - 1 = 3{x^4} + 4{x^2},\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 0.\) Biết \[F\left( x \right)\] là một nguyên hàm của hàm số \(21 \cdot f\left( {{x^2}} \right)\) và \(F(0) = 10\), hãy tính \(F\left( 2 \right).\)
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) thỏa mãn \(\left( {1 + {x^2}} \right) \cdot f'\left( x \right) - 1 = 3{x^4} + 4{x^2},\,\,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 0.\) Biết \[F\left( x \right)\] là một nguyên hàm của hàm số \(21 \cdot f\left( {{x^2}} \right)\) và \(F(0) = 10\), hãy tính \(F\left( 2 \right).\)
Quảng cáo
Trả lời:
Ta có \(\left( {1 + {x^2}} \right)f'\left( x \right) - 1 = 3{x^4} + 4{x^2} \Leftrightarrow f'\left( x \right) = \frac{{3{x^4} + 4{x^2} + 1}}{{1 + {x^2}}}\).
Suy ra \[f\left( x \right) = \int {f'\left( x \right)\,} {\rm{d}}x = \int {\frac{{3{x^4} + 4{x^2} + 1}}{{1 + {x^2}}}} \;{\rm{d}}x\]
\( = \int {\frac{{3{x^2}\left( {{x^2} + 1} \right) + \left( {{x^2} + 1} \right)}}{{1 + {x^2}}}} \;{\rm{d}}x = \int {\left( {3{x^2} + 1} \right)} \,{\rm{d}}x = {x^3} + x + C{\rm{. }}\)
Do \(f\left( 1 \right) = 0 \Leftrightarrow 2 + C = 0 \Leftrightarrow C = - 2.\) Khi đó \(f\left( x \right) = {x^3} + x - 2.\)
Suy ra \(f\left( {{x^2}} \right) = {\left( {{x^2}} \right)^3} + {x^2} - 2 = {x^6} + {x^2} - 2.\)
Do \(F\left( x \right) = \int 2 1 \cdot f\left( {{x^2}} \right){\rm{d}}x = 21\int f \left( {{x^2}} \right){\rm{d}}x\)\( = 21\int {\left( {{x^6} + {x^2} - 2} \right)\,} {\rm{d}}x = 21\left( {\frac{{{x^7}}}{7} + \frac{{{x^3}}}{3} - 2x} \right) + D{\rm{. }}\)
Mặt khác \(F\left( 0 \right) = 10 \Rightarrow D = 10.\) Suy ra \(F\left( x \right) = 3{x^7} + 7{x^3} - 42x + 10.\)
Vậy \(F\left( 2 \right) = 3 \cdot {2^7} + 7 \cdot {2^3} - 42 \cdot 2 + 10 = 366.\) Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn hệ trục toạ độ như hình vẽ.

Theo đề ta có phương trình của elip là \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1.\)
Gọi \[M,\,\,N\] lần lượt là giao điểm của dầu với elip.
Gọi \({S_1}\) là diện tích của hình elip ta có \({S_1} = \pi ab = \pi \cdot \frac{1}{2} \cdot \frac{2}{5} = \frac{\pi }{5}.\)
Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi elip và đường thẳng \[MN\]
Theo đề bài chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m\] nên ta có phương trình của đường thẳng \[MN\] là \(y = \frac{1}{5}.\)
Mặt khác, từ phương trình \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1\), ta có \(y = \frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} .\)
Do đường thẳng \(y = \frac{1}{5}\) cắt elip tại hai đỉnh \[M,\,\,N\] có hoành độ lần lượt là \( - \frac{{\sqrt 3 }}{4}\) và \(\frac{{\sqrt 3 }}{4}\) nên
\({S_2} = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {\frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} - \frac{1}{5}} \right)} \,{\rm{d}}x = \frac{4}{5}\int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x - \frac{{\sqrt 3 }}{{10}}{\rm{. }}\)
Tính \(I = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x\). Đặt \(x = \frac{1}{2}\sin t \Rightarrow {\rm{d}}x = \frac{1}{2}\cos t\;{\rm{d}}t.\)
Đổi cận: Khi \(x = - \frac{{\sqrt 3 }}{4}\) thì \(t = - \frac{\pi }{3}\); khi \(x = \frac{{\sqrt 3 }}{4}\) thì \(t = \frac{\pi }{3}.\)
\(I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{1}{2} \cdot \frac{1}{2}{{\cos }^2}t\;{\rm{d}}t} = \frac{1}{8}\int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {1 + \cos 2t} \right){\rm{d}}t} = \frac{1}{8}\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right).\)
Do đó \({S_2} = \frac{4}{5} \cdot \frac{1}{8}{\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right)^3} - \frac{{\sqrt 3 }}{{10}} = \frac{\pi }{{15}} - \frac{{\sqrt 3 }}{{20}}.\)
Thể tích của dầu trong thùng là \(V = \left( {\frac{\pi }{5} - \frac{\pi }{{15}} + \frac{{\sqrt 3 }}{{20}}} \right) \cdot 3 = 1,52\).
Vậy \(V = 1,52\;\,{{\rm{m}}^3}.\) Chọn D.
Câu 2
Lời giải
TH1: Chọn 3 học sinh nữ có \(C_{15}^3 = 455\) (cách).
TH2: Chọn 2 học sinh nữ, 1 học sinh nam có \(C_{15}^2 \cdot C_{25}^1 = 2\,\,625\) (cách).
Số cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam là:
\[2\,\,625 + 455 = 3\,\,080\] (cách). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


