Cho hàm số \(f\left( x \right)\) có đạo hàm xác định trên \(\mathbb{R}\) thỏa mãn \(f\left( 0 \right) = 2\sqrt 2 \,,\,\,f\left( x \right) > 0\) và \(f\left( x \right) \cdot f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\,\forall x \in \mathbb{R}.\) Giá trị \[f\left( 2 \right)\] là:
Cho hàm số \(f\left( x \right)\) có đạo hàm xác định trên \(\mathbb{R}\) thỏa mãn \(f\left( 0 \right) = 2\sqrt 2 \,,\,\,f\left( x \right) > 0\) và \(f\left( x \right) \cdot f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\,\forall x \in \mathbb{R}.\) Giá trị \[f\left( 2 \right)\] là:
Quảng cáo
Trả lời:
Ta có \(f\left( x \right) \cdot f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \frac{{f\left( x \right) \cdot f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Leftrightarrow \frac{{2f\left( x \right) \cdot f'\left( x \right)}}{{2\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1\)
\( \Rightarrow \int {\frac{{2f\left( x \right) \cdot f'\left( x \right)}}{{2\sqrt {1 + {f^2}\left( x \right)} }}} {\rm{d}}x = \int {\left( {2x + 1} \right)} \,{\rm{d}}x \Leftrightarrow \sqrt {1 + {f^2}\left( x \right)} = {x^2} + x + C.\)
Cho \(x = 0\) ta được: \(C = \sqrt {1 + {f^2}\left( 0 \right)} = \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} = 3\). Suy ra \(\sqrt {1 + {f^2}\left( x \right)} = {x^2} + x + 3\)
Lại cho \(x = 2\) ta được: \(\sqrt {1 + {f^2}\left( 2 \right)} = 4 + 2 + 3 = 9 \Rightarrow 1 + {f^2}\left( 2 \right) = 81 \Rightarrow {f^2}\left( 2 \right) = 80\)
\( \Rightarrow f\left( 2 \right) = 4\sqrt 5 \) (do \(f\left( x \right) > 0\)). Do đó \(f\left( 2 \right) = 4\sqrt 5 .\) Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn hệ trục toạ độ như hình vẽ.

Theo đề ta có phương trình của elip là \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1.\)
Gọi \[M,\,\,N\] lần lượt là giao điểm của dầu với elip.
Gọi \({S_1}\) là diện tích của hình elip ta có \({S_1} = \pi ab = \pi \cdot \frac{1}{2} \cdot \frac{2}{5} = \frac{\pi }{5}.\)
Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi elip và đường thẳng \[MN\]
Theo đề bài chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m\] nên ta có phương trình của đường thẳng \[MN\] là \(y = \frac{1}{5}.\)
Mặt khác, từ phương trình \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1\), ta có \(y = \frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} .\)
Do đường thẳng \(y = \frac{1}{5}\) cắt elip tại hai đỉnh \[M,\,\,N\] có hoành độ lần lượt là \( - \frac{{\sqrt 3 }}{4}\) và \(\frac{{\sqrt 3 }}{4}\) nên
\({S_2} = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {\frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} - \frac{1}{5}} \right)} \,{\rm{d}}x = \frac{4}{5}\int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x - \frac{{\sqrt 3 }}{{10}}{\rm{. }}\)
Tính \(I = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x\). Đặt \(x = \frac{1}{2}\sin t \Rightarrow {\rm{d}}x = \frac{1}{2}\cos t\;{\rm{d}}t.\)
Đổi cận: Khi \(x = - \frac{{\sqrt 3 }}{4}\) thì \(t = - \frac{\pi }{3}\); khi \(x = \frac{{\sqrt 3 }}{4}\) thì \(t = \frac{\pi }{3}.\)
\(I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{1}{2} \cdot \frac{1}{2}{{\cos }^2}t\;{\rm{d}}t} = \frac{1}{8}\int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {1 + \cos 2t} \right){\rm{d}}t} = \frac{1}{8}\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right).\)
Do đó \({S_2} = \frac{4}{5} \cdot \frac{1}{8}{\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right)^3} - \frac{{\sqrt 3 }}{{10}} = \frac{\pi }{{15}} - \frac{{\sqrt 3 }}{{20}}.\)
Thể tích của dầu trong thùng là \(V = \left( {\frac{\pi }{5} - \frac{\pi }{{15}} + \frac{{\sqrt 3 }}{{20}}} \right) \cdot 3 = 1,52\).
Vậy \(V = 1,52\;\,{{\rm{m}}^3}.\) Chọn D.
Câu 2
Lời giải
TH1: Chọn 3 học sinh nữ có \(C_{15}^3 = 455\) (cách).
TH2: Chọn 2 học sinh nữ, 1 học sinh nam có \(C_{15}^2 \cdot C_{25}^1 = 2\,\,625\) (cách).
Số cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam là:
\[2\,\,625 + 455 = 3\,\,080\] (cách). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


