Một cái thùng đựng dầu có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn là \(1\;\,{\rm{m,}}\) trục bé \(0,8\;\,{\rm{m,}}\) chiều dài (mặt trong của thùng) bằng \(3\;\,{\rm{m}}\) được đặt sao cho trục bé nắm theo phương thẳng đứng (như hình vẽ). Biết chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m.\]
Thể tích \[V\] của dầu có trong thùng (kết quả làm tròn đến hàng phần trăm) là:

Thể tích \[V\] của dầu có trong thùng (kết quả làm tròn đến hàng phần trăm) là:
Quảng cáo
Trả lời:
Chọn hệ trục toạ độ như hình vẽ.

Theo đề ta có phương trình của elip là \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1.\)
Gọi \[M,\,\,N\] lần lượt là giao điểm của dầu với elip.
Gọi \({S_1}\) là diện tích của hình elip ta có \({S_1} = \pi ab = \pi \cdot \frac{1}{2} \cdot \frac{2}{5} = \frac{\pi }{5}.\)
Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi elip và đường thẳng \[MN\]
Theo đề bài chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m\] nên ta có phương trình của đường thẳng \[MN\] là \(y = \frac{1}{5}.\)
Mặt khác, từ phương trình \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1\), ta có \(y = \frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} .\)
Do đường thẳng \(y = \frac{1}{5}\) cắt elip tại hai đỉnh \[M,\,\,N\] có hoành độ lần lượt là \( - \frac{{\sqrt 3 }}{4}\) và \(\frac{{\sqrt 3 }}{4}\) nên
\({S_2} = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {\frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} - \frac{1}{5}} \right)} \,{\rm{d}}x = \frac{4}{5}\int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x - \frac{{\sqrt 3 }}{{10}}{\rm{. }}\)
Tính \(I = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x\). Đặt \(x = \frac{1}{2}\sin t \Rightarrow {\rm{d}}x = \frac{1}{2}\cos t\;{\rm{d}}t.\)
Đổi cận: Khi \(x = - \frac{{\sqrt 3 }}{4}\) thì \(t = - \frac{\pi }{3}\); khi \(x = \frac{{\sqrt 3 }}{4}\) thì \(t = \frac{\pi }{3}.\)
\(I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{1}{2} \cdot \frac{1}{2}{{\cos }^2}t\;{\rm{d}}t} = \frac{1}{8}\int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {1 + \cos 2t} \right){\rm{d}}t} = \frac{1}{8}\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right).\)
Do đó \({S_2} = \frac{4}{5} \cdot \frac{1}{8}{\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right)^3} - \frac{{\sqrt 3 }}{{10}} = \frac{\pi }{{15}} - \frac{{\sqrt 3 }}{{20}}.\)
Thể tích của dầu trong thùng là \(V = \left( {\frac{\pi }{5} - \frac{\pi }{{15}} + \frac{{\sqrt 3 }}{{20}}} \right) \cdot 3 = 1,52\).
Vậy \(V = 1,52\;\,{{\rm{m}}^3}.\) Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
TH1: Chọn 3 học sinh nữ có \(C_{15}^3 = 455\) (cách).
TH2: Chọn 2 học sinh nữ, 1 học sinh nam có \(C_{15}^2 \cdot C_{25}^1 = 2\,\,625\) (cách).
Số cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam là:
\[2\,\,625 + 455 = 3\,\,080\] (cách). Chọn D.
Lời giải
TXĐ: \(D = \mathbb{R}\backslash \{ 1\} .\)
Tiệm cận đứng: \(x = 1\left( {{d_1}} \right)\), tiệm cận ngang: \(y = 1\) nên \(\left( {{d_2}} \right) \Rightarrow I\left( {1\,;\,\,1} \right)\).
Ta có \(y' = \frac{{ - 2}}{{{{\left( {2x - 2} \right)}^2}}}\). Phương trình tiếp tuyến \(\Delta \) tại điểm \(M\left( {{x_0};{y_0}} \right)\) có dạng \(y = \frac{{ - 2}}{{{{\left( {2{x_0} - 2} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{2{x_0} - 1}}{{2{x_0} - 2}}\).\(A = \Delta \cap {d_1} \Rightarrow A\left( {1\,;\,\,\frac{{{x_0}}}{{{x_0} - 1}}} \right)\,;\,\,B = \Delta \cap {d_2}\)\( \Rightarrow B\left( {2{x_0} - 1\,;\,\,1} \right)\,;\,\,\overrightarrow {IB} = \left( {2{x_0} - 2\,;\,\,0} \right)\,;\,\,\overrightarrow {IA} = \left( {0\,;\,\,\frac{1}{{{x_0} - 1}}} \right)\).
Ta có \({S_{OIB}} = 8{S_{OIA}} \Leftrightarrow \frac{1}{2} \cdot OI \cdot IB \cdot \sin \widehat {OIB} = 8 \cdot \frac{1}{2} \cdot OI \cdot IA \cdot \sin \widehat {OIA}\)
\( \Leftrightarrow IB = 8IA\,\,\left( {{\rm{v\`i }}\widehat {OIB} = \widehat {OIA} = 135^\circ } \right) \Leftrightarrow \left| {2{x_0} - 2} \right| = 8\left| {\frac{1}{{{x_0} - 1}}} \right|\)
\( \Leftrightarrow {\left( {{x_0} - 1} \right)^2} = 4 \Rightarrow {x_0} = 3\,\,\left( {{\rm{do }}{x_0} > 1} \right) \Rightarrow {y_0} = \frac{5}{4} \Rightarrow S = {x_0} + 4{y_0} = 3 + 4 \cdot \frac{5}{4} = 8.\)
Đáp án cần nhập là: 8.

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.