Ngày 4 – 6 – 1783, anh em nhà Mông-gôn-fi-ê (người Pháp) phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu có đường kính 11 m và được làm bằng vải dù. Hãy tính diện tích vải dù để làm khinh khí cầu đó (lấy p = 3,14 và làm tròn kết quả đến chữ số thập phần thứ hai)
Ngày 4 – 6 – 1783, anh em nhà Mông-gôn-fi-ê (người Pháp) phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu có đường kính 11 m và được làm bằng vải dù. Hãy tính diện tích vải dù để làm khinh khí cầu đó (lấy p = 3,14 và làm tròn kết quả đến chữ số thập phần thứ hai)
Quảng cáo
Trả lời:
Vì khinh khí cầu hình cầu có bán kính R = 11 : 2 = 5,5 m nên:
\[S = 4\pi {R^2} = 4.3,14.{\left( {5,5} \right)^2} = 379,94\left( {{m^2}} \right)\]
Vậy diện tích vải dù dùng để làm khinh khí cầu là 379,94 m2
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hình nón và quả cầu như hình vẽ bên dưới.

\(OI = \frac{{I{K^2}}}{{SI}} = \frac{{{3^2}}}{5} = \frac{9}{5}\,\,\,\left( {{\rm{cm}}} \right).\)
Thể tích chỏm cầu tâm I có bán kính OK là: \({V_2} = \pi .{\left( {IK - OI} \right)^2}.\left( {IK - \frac{{IK - OI}}{3}} \right) = \pi .{\left( {3 - \frac{9}{5}} \right)^2}.\left( {3 - \frac{{3 - {\textstyle{9 \over 5}}}}{3}} \right) = \frac{{468\pi }}{{125}}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Thể tích hình nón có đỉnh S, đáy hình tròn tâm O, bán kính đáy OK là:
\({V_1} = \frac{1}{3}.SO.{S_{(O;OK)}}\)\(\frac{1}{3}.\frac{{16}}{5}.\pi {\left( {\frac{{12}}{5}} \right)^2} = \frac{{768\pi }}{{125}}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Thể tích phần không gian kín giới hạn bởi bề mặt quả cầu và bề mặt trong của vật hình nón là: \({V_1} - {V_2} = \frac{{768\pi }}{{125}} - \frac{{468\pi }}{{125}} = \frac{{12\pi }}{5}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Lời giải
![Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2026/01/18-1769749618.png)
Gọi \[R = 2,7\,cm\] là bán kính của viên bi. Ta có bán kính phần trong đáy cốc là \[2R\].
Thể tích nước ban đầu là: \[{V_1} = \pi {\left( {2R} \right)^2}.4,5 = 18\pi {R^2}\].
Thể tích viên bi là: \[{V_2} = \frac{4}{3}\pi {R^3}\].
Thể tích nước sau khi thả viên bi là: \[V = {V_1} + {V_2} = 18\pi {R^2} + \frac{4}{3}\pi {R^3} = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)\].
Gọi \[h\] là chiều cao mực nước sau khi thả viên bi vào.
Ta có: \[V = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right) = \pi {\left( {2R} \right)^2}.h \Rightarrow h = \frac{{2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)}}{{\pi {{\left( {2R} \right)}^2}}} = \frac{{\left( {9 + \frac{2}{3}R} \right)}}{2} = 5.4\,\left( {cm} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/16-1769749596.png)




