Một khối cầu pha lê gồm một hình cầu \(\left( {{H_1}} \right)\) bán kính R và một hình nón \(\left( {{H_2}} \right)\) có bán kính đáy và đường sinh lần lượt là \(r,\,l\) thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau (hình vẽ). Biết tổng diện tích mặt cầu \(\left( {{H_1}} \right)\) và diện tích toàn phần của hình nón \(\left( {{H_2}} \right)\) là \(91c{m^2}\). Tính diện tích của mặt cầu \(\left( {{H_1}} \right)\)

Một khối cầu pha lê gồm một hình cầu \(\left( {{H_1}} \right)\) bán kính R và một hình nón \(\left( {{H_2}} \right)\) có bán kính đáy và đường sinh lần lượt là \(r,\,l\) thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau (hình vẽ). Biết tổng diện tích mặt cầu \(\left( {{H_1}} \right)\) và diện tích toàn phần của hình nón \(\left( {{H_2}} \right)\) là \(91c{m^2}\). Tính diện tích của mặt cầu \(\left( {{H_1}} \right)\)

Quảng cáo
Trả lời:
\(r = \frac{1}{2}l = \frac{1}{2}.\frac{3}{2}R = \frac{3}{4}R\).
Diện tích mặt cầu \({S_1} = 4\pi {R^2}\)
Diện tích toàn phần của hình nón \({S_2} = \pi rl + \pi {r^2} = \pi .\frac{3}{4}R.\frac{3}{2}R + \pi .\frac{9}{{16}}{R^2} = \frac{{27\pi {R^2}}}{{16}}\)
Theo giả thiết: \(4\pi {R^2} + \frac{{27\pi {R^2}}}{{16}} = 91 \Leftrightarrow \frac{{91\pi {R^2}}}{{16}} = 91 \Leftrightarrow \pi {R^2} = 16\)
Vậy \({S_1} = 4\pi {R^2} = 64c{m^2}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hình nón và quả cầu như hình vẽ bên dưới.

\(OI = \frac{{I{K^2}}}{{SI}} = \frac{{{3^2}}}{5} = \frac{9}{5}\,\,\,\left( {{\rm{cm}}} \right).\)
Thể tích chỏm cầu tâm I có bán kính OK là: \({V_2} = \pi .{\left( {IK - OI} \right)^2}.\left( {IK - \frac{{IK - OI}}{3}} \right) = \pi .{\left( {3 - \frac{9}{5}} \right)^2}.\left( {3 - \frac{{3 - {\textstyle{9 \over 5}}}}{3}} \right) = \frac{{468\pi }}{{125}}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Thể tích hình nón có đỉnh S, đáy hình tròn tâm O, bán kính đáy OK là:
\({V_1} = \frac{1}{3}.SO.{S_{(O;OK)}}\)\(\frac{1}{3}.\frac{{16}}{5}.\pi {\left( {\frac{{12}}{5}} \right)^2} = \frac{{768\pi }}{{125}}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Thể tích phần không gian kín giới hạn bởi bề mặt quả cầu và bề mặt trong của vật hình nón là: \({V_1} - {V_2} = \frac{{768\pi }}{{125}} - \frac{{468\pi }}{{125}} = \frac{{12\pi }}{5}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Lời giải
![Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2026/01/18-1769749618.png)
Gọi \[R = 2,7\,cm\] là bán kính của viên bi. Ta có bán kính phần trong đáy cốc là \[2R\].
Thể tích nước ban đầu là: \[{V_1} = \pi {\left( {2R} \right)^2}.4,5 = 18\pi {R^2}\].
Thể tích viên bi là: \[{V_2} = \frac{4}{3}\pi {R^3}\].
Thể tích nước sau khi thả viên bi là: \[V = {V_1} + {V_2} = 18\pi {R^2} + \frac{4}{3}\pi {R^3} = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)\].
Gọi \[h\] là chiều cao mực nước sau khi thả viên bi vào.
Ta có: \[V = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right) = \pi {\left( {2R} \right)^2}.h \Rightarrow h = \frac{{2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)}}{{\pi {{\left( {2R} \right)}^2}}} = \frac{{\left( {9 + \frac{2}{3}R} \right)}}{2} = 5.4\,\left( {cm} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/16-1769749596.png)




