Câu hỏi:

30/01/2026 16 Lưu

Cho một dụng cụ đựng chất lỏng được tạo bởi một hình trụ và hình nón được lắp đặt như hình bên. Bán kính đáy hình nón bằng bán kính đáy hình trụ. Chiều cao hình trụ bằng chiều cao hình nón và bằng h. Trong bình, lượng chất lỏng có chiều cao bằng \[\frac{1}{{24}}\] chiều cao hình trụ. Lật ngược dụng cụ theo phương vuông góc với mặt đất. Tính độ cao phần chất lỏng trong hình nón theo h.

Cho một dụng cụ đựng chất lỏng được tạo bởi một hình trụ và hình nón được lắp đặt như hình bên. Bán kính đáy hình nón bằng bán kính đáy hình trụ. Chiều cao hình trụ bằng chiều cao hình nón và bằng h. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Thể tích chất lỏng \[V = \pi {r^2}.\frac{1}{{24}}h = \frac{1}{{24}}\pi {r^2}h\].

Khi lật ngược bình, thể tích phần hình nón chứa chất lỏng là \[V' = \frac{1}{3}\pi {r'^2}h'\].

Mà \[\frac{{r'}}{r} = \frac{{h'}}{h} \Rightarrow r' = \frac{{h'}}{h}.r\]. Do đó \[V' = \frac{1}{3}\pi {\left( {\frac{{h'}}{h}.r} \right)^2}h' = \frac{1}{3}\pi {r^2}.\frac{{{{h'}^3}}}{{{h^2}}}\].

Theo bài ra, \[V' = V \Leftrightarrow \frac{1}{3}\pi {r^2}.\frac{{{{h'}^3}}}{{{h^2}}} = \frac{1}{{24}}\pi {r^2}h \Leftrightarrow {h'^3} = \frac{1}{8}{h^3} \Leftrightarrow h' = \frac{h}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hình nón và quả cầu như hình vẽ bên dưới.

Thả một quả cầu đặc có bán k (ảnh 2)

\(OI = \frac{{I{K^2}}}{{SI}} = \frac{{{3^2}}}{5} = \frac{9}{5}\,\,\,\left( {{\rm{cm}}} \right).\)

Thể tích chỏm cầu tâm I có bán kính OK là: \({V_2} = \pi .{\left( {IK - OI} \right)^2}.\left( {IK - \frac{{IK - OI}}{3}} \right) = \pi .{\left( {3 - \frac{9}{5}} \right)^2}.\left( {3 - \frac{{3 - {\textstyle{9 \over 5}}}}{3}} \right) = \frac{{468\pi }}{{125}}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Thể tích hình nón có đỉnh S, đáy hình tròn tâm O, bán kính đáy OK là:

\({V_1} = \frac{1}{3}.SO.{S_{(O;OK)}}\)\(\frac{1}{3}.\frac{{16}}{5}.\pi {\left( {\frac{{12}}{5}} \right)^2} = \frac{{768\pi }}{{125}}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Thể tích phần không gian kín giới hạn bởi bề mặt quả cầu và bề mặt trong của vật hình nón là: \({V_1} - {V_2} = \frac{{768\pi }}{{125}} - \frac{{468\pi }}{{125}} = \frac{{12\pi }}{5}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Lời giải

Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 2)

Gọi \[R = 2,7\,cm\] là bán kính của viên bi. Ta có bán kính phần trong đáy cốc là \[2R\].

Thể tích nước ban đầu là: \[{V_1} = \pi {\left( {2R} \right)^2}.4,5 = 18\pi {R^2}\].

Thể tích viên bi là: \[{V_2} = \frac{4}{3}\pi {R^3}\].

Thể tích nước sau khi thả viên bi là: \[V = {V_1} + {V_2} = 18\pi {R^2} + \frac{4}{3}\pi {R^3} = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)\].

Gọi \[h\] là chiều cao mực nước sau khi thả viên bi vào.

Ta có: \[V = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right) = \pi {\left( {2R} \right)^2}.h \Rightarrow h = \frac{{2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)}}{{\pi {{\left( {2R} \right)}^2}}} = \frac{{\left( {9 + \frac{2}{3}R} \right)}}{2} = 5.4\,\left( {cm} \right)\].