Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. Khi đó chiều cao của mực nước trong cốc là bao nhiêu?
![Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/16-1769749596.png)
Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. Khi đó chiều cao của mực nước trong cốc là bao nhiêu?
![Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/16-1769749596.png)
Quảng cáo
Trả lời:
![Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2026/01/18-1769749618.png)
Gọi \[R = 2,7\,cm\] là bán kính của viên bi. Ta có bán kính phần trong đáy cốc là \[2R\].
Thể tích nước ban đầu là: \[{V_1} = \pi {\left( {2R} \right)^2}.4,5 = 18\pi {R^2}\].
Thể tích viên bi là: \[{V_2} = \frac{4}{3}\pi {R^3}\].
Thể tích nước sau khi thả viên bi là: \[V = {V_1} + {V_2} = 18\pi {R^2} + \frac{4}{3}\pi {R^3} = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)\].
Gọi \[h\] là chiều cao mực nước sau khi thả viên bi vào.
Ta có: \[V = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right) = \pi {\left( {2R} \right)^2}.h \Rightarrow h = \frac{{2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)}}{{\pi {{\left( {2R} \right)}^2}}} = \frac{{\left( {9 + \frac{2}{3}R} \right)}}{2} = 5.4\,\left( {cm} \right)\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích hình nón là \[{V_1} = \frac{1}{3}\pi .{R^2}.2R = \frac{2}{3}\pi .{R^3}\]
Thể tích nửa hình cầu là \({V_2} = \frac{1}{2}.\frac{4}{3}\pi .{R^3} = \frac{2}{3}\pi .{R^3}\)
Thể tích của toàn bộ khối đồ vật là:
\({V_1} + {V_2} = 36\pi \)
\(\begin{array}{l}\frac{4}{3}\pi .{R^3} = 36\pi \\ \Rightarrow R = 3\end{array}\)
Diện tích xung quanh của mặt nón là \({S_1} = \pi R.\sqrt {4{R^2} + {R^2}} = \pi {R^2}\sqrt 5 = 9\sqrt 5 \pi \)
Diện tích của nửa mặt cầu là \({S_2} = \frac{1}{2}.4\pi {R^2} = 18\pi \)
Diện tích bề mặt của toàn bộ đồ vật bằng \({S_1} + {S_2} = 9\pi \left( {\sqrt 5 + 2} \right){\rm{ }}c{m^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






![Công ty vàng bạc đá quý muốn làm một món đồ trang sức có hình hai hình cầu bằng nhau giao nhau như hình vẽ. Khối cầu có bán kính \[25cm\]khoảng cách giữa hai tâm hình cầu là \[40cm\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/21-1769749708.jpg)