Một tấm bìa hình tròn được chia làm bốn phần có diện tích bằng nhau; ghi các số 1,2,3,4 và được gắn vào trục quay có mũi tên cố định ở tâm. Bạn Nam quay tấm bia, bạn Bình gieo một con xúc xắc cân đối. Giả sử mũi tên dừng ở hình quạt ghi số \(m\) và số chấm xuất hiện trên con xúc xắc là \(n\). Tính xác suất của các biến cố sau:
a) \(E\): “Trong hai số \(m\) và \(n\), chỉ có một số nguyên tố”;
b) F: “Tổng của hai số \(m\) và \(n\) lớn hơn 6”.
Một tấm bìa hình tròn được chia làm bốn phần có diện tích bằng nhau; ghi các số 1,2,3,4 và được gắn vào trục quay có mũi tên cố định ở tâm. Bạn Nam quay tấm bia, bạn Bình gieo một con xúc xắc cân đối. Giả sử mũi tên dừng ở hình quạt ghi số \(m\) và số chấm xuất hiện trên con xúc xắc là \(n\). Tính xác suất của các biến cố sau:
a) \(E\): “Trong hai số \(m\) và \(n\), chỉ có một số nguyên tố”;
b) F: “Tổng của hai số \(m\) và \(n\) lớn hơn 6”.
Quảng cáo
Trả lời:
|
Bình Nam |
1 |
2 |
3 |
4 |
5 |
6 |
|
1 |
\(\left( {1;1} \right)\) |
\(\left( {1;2} \right)\) |
\(\left( {1;3} \right)\) |
\(\left( {1;4} \right)\) |
\(\left( {1;5} \right)\) |
\(\left( {1;6} \right)\) |
|
2 |
\(\left( {2;1} \right)\) |
\(\left( {2;2} \right)\) |
\(\left( {2;3} \right)\) |
\(\left( {2;4} \right)\) |
\(\left( {2;5} \right)\) |
\(\left( {2;6} \right)\) |
|
3 |
\(\left( {3;1} \right)\) |
\(\left( {3;2} \right)\) |
\(\left( {3;3} \right)\) |
\(\left( {3;4} \right)\) |
\(\left( {3;5} \right)\) |
\(\left( {3;6} \right)\) |
|
4 |
\(\left( {4;1} \right)\) |
\(\left( {4;2} \right)\) |
\(\left( {4;3} \right)\) |
\(\left( {4;4} \right)\) |
\(\left( {4;5} \right)\) |
\(\left( {4;6} \right)\) |
Có 24 kết quả có thể là đồng khả năng \(n\left( \Omega \right) = 24\).
a) Có 12 kết quả thuận lợi cho biến cố \(E\) là \((1,2);(1,3);(1,5);(2,1);(2,4)\);\((2,6);(3,1);(3,4);(3,6);(4,2);\) \((4,3);(4,5)\). Vậy \(P\left( E \right) = \frac{{12}}{{24}} = \frac{1}{2}\).
b) Có 10 kết quả thuận lợi cho biến cố \(F\) là \((1,6);(2,5);(2,6);(3,4);(3,5)\); \((3,6);(4,3);(4,4);(4,5);(4,6)\).
Vậy \(P\left( F \right) = \frac{{10}}{{24}} = \frac{5}{{12}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:
|
Sơn Hòa |
\(SS\) |
\(SN\) |
\(NS\) |
\(NN\) |
|
1 |
\(1SS\) |
\(1SN\) |
\(1NS\) |
\(1NN\) |
|
2 |
\(2SS\) |
\(2SN\) |
\(2NS\) |
\(2NN\) |
|
3 |
\(3SS\) |
\(3SN\) |
\(3NS\) |
\(3NN\) |
|
4 |
\(4SS\) |
\(4SN\) |
\(4NS\) |
\(4NN\) |
|
5 |
\(5SS\) |
\(5SN\) |
\(5NS\) |
\(5NN\) |
|
6 |
\(6SS\) |
\(6SN\) |
\(6NS\) |
\(6NN\) |
Mỗi ô trong bảng là một kết quả có thể. Có 24 kết quả có thể là đồng khả năng.
a) Có 1 kết quả thuận lợi cho biến cố \(A\) là \(6NN\). Vậy \(P\left( A \right) = \frac{1}{{24}}\).
b) Có 4 kết quả thuận lợi cho biến cố \(B\) là \(1SN,1NS,2SN,2NS\). Vậy \(P\left( B \right) = \frac{4}{{24}} = \frac{1}{6}\).
Lời giải
Không gian mẫu \(\Omega = \left\{ {\left( {a,b} \right);1 \le a,b \le 6} \right\}\), trong đó \(a,b\) tương ứng là số chấm xuất hiện trên con xúc xắc ở lần gieo thứ nhất và thứ hai; \(n\left( \Omega \right) = 36\).
Gọi \(A\) là biến cố “Tổng số chấm xuất hiện trên con xúc xắc trong hai lần gieo lớn hơn hoặc bằng 8”.
Có 15 kết quả thuận lợi cho biến cố \(A\) là \((2,6);(3,5);(3,6);(4,4);(4,5)\);\((4,6);(5,3);(5,4);(5,5);(5,6);(6,2);\) \((6,3);(6,4);(6,5);(6,6)\). Vậy \(P\left( A \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.