Câu hỏi:

01/02/2026 61 Lưu

Bác Mạnh rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Tính xác suất của mỗi biến cố sau:

A: "Bác Mạnh rút được lá bài Át";

B: "Bác Mạnh rút được lá bài chất cơ".

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do bộ bài có 52 lá nên số các kết quả có thể xảy ra là \(n(\Omega ) = 52\). Do các lá bài giống nhau nên các kết quả của phép thử có cùng khả năng xảy ra.

a) Do có 4 lá Át trong bộ bài nên số kết quả thuận lợi cho biến cố \(A\)\(n(A) = 4\).

Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{4}{{52}} = \frac{1}{{13}}\).

b) Do có 13 lá bài chất cơ trong bộ bài nên số các kết quả thuận lợi cho biến cố \(B\)\(n(B) = 13\).

Xác suất của biến cố \(B\)\(P(B) = \frac{{13}}{{52}} = 0,25\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:

                   Sơn

Hòa

\(SS\)

\(SN\)

\(NS\)

\(NN\)

1

\(1SS\)

\(1SN\)

\(1NS\)

\(1NN\)

2

\(2SS\)

\(2SN\)

\(2NS\)

\(2NN\)

3

\(3SS\)

\(3SN\)

\(3NS\)

\(3NN\)

4

\(4SS\)

\(4SN\)

\(4NS\)

\(4NN\)

5

\(5SS\)

\(5SN\)

\(5NS\)

\(5NN\)

6

\(6SS\)

\(6SN\)

\(6NS\)

\(6NN\)

Mỗi ô trong bảng là một kết quả có thể. Có 24 kết quả có thể là đồng khả năng.

a) Có 1 kết quả thuận lợi cho biến cố \(A\) là \(6NN\). Vậy \(P\left( A \right) = \frac{1}{{24}}\).

b) Có 4 kết quả thuận lợi cho biến cố \(B\) là \(1SN,1NS,2SN,2NS\). Vậy \(P\left( B \right) = \frac{4}{{24}} = \frac{1}{6}\).

Lời giải

Không gian mẫu \(\Omega = \left\{ {\left( {a,b} \right);1 \le a,b \le 6} \right\}\), trong đó \(a,b\) tương ứng là số chấm xuất hiện trên con xúc xắc ở lần gieo thứ nhất và thứ hai; \(n\left( \Omega \right) = 36\).

Gọi \(A\) là biến cố “Tổng số chấm xuất hiện trên con xúc xắc trong hai lần gieo lớn hơn hoặc bằng 8”.

Có 15 kết quả thuận lợi cho biến cố \(A\)\((2,6);(3,5);(3,6);(4,4);(4,5)\);\((4,6);(5,3);(5,4);(5,5);(5,6);(6,2);\) \((6,3);(6,4);(6,5);(6,6)\). Vậy \(P\left( A \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).