Câu hỏi:

01/02/2026 40 Lưu

Có hai túi I và II. Túi I chứa 3 tấm thẻ, đánh số 2 ; 3 ; 4. Túi II chứa 32 tấm thẻ, đánh số 5 ; 6. Từ mỗi túi I và II, rút ngẫu nhiên một tấm thẻ. Tính xác suất của các biến cố sau:

A: “Hai số ghi trên hai tấm thẻ chênh nhau 2 đơn vị”;

B: “Hai số ghi trên hai tấm thẻ chênh nhau lớn hơn 2 đơn vị”;

C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”;

D: “Tổng hai số ghi trên hai tấm thẻ là một số nguyên tố”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

                Túi I

Túi II

5

6

2

\(\left( {2;5} \right)\)

\(\left( {2;6} \right)\)

3

\(\left( {3;5} \right)\)

\(\left( {3;6} \right)\)

4

\(\left( {4;5} \right)\)

\(\left( {4;6} \right)\)

Ta có: \[\Omega = \left\{ {\left( {2;5} \right);\left( {2;6} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;5} \right);\left( {4;6} \right)} \right\} \Rightarrow n = 6\].

\(A = \left\{ {\left( {3;5} \right);\left( {4;6} \right)} \right\} \Rightarrow n\left( A \right) = 2\). Vậy \(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).

\(B = \left\{ {\left( {2;5} \right);\left( {2;6} \right);\left( {3;6} \right)} \right\} \Rightarrow n\left( B \right) = 3\). Vậy \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\).

\({\rm{C}} = \left\{ {\left( {2;5} \right);\left( {2;6} \right);\left( {3;6} \right);\left( {4;5} \right);\left( {4;6} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{C}} \right) = 5\). Vậy \({\rm{P}}\left( C \right) = \frac{5}{6}\).

\[D = \left\{ {\left( {2;5} \right)} \right\} \Rightarrow n\left( D \right) = 1\]. Vậy \(P\left( D \right) = \frac{1}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.

a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega  \right) = 10\]

b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).

\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].

Lời giải

a) Kí hiệu lần lượt là viên xanh, đỏ, trắng. Ta viết có nghĩa là lấy viên xanh, đến viên đỏ và cuối cùng là lấy viên trắng.

b) Ta có:. Vậy \({\rm{P}}\left( A \right) = \frac{2}{6} = \frac{1}{3}\).

. Vậy \({\rm{P}}\left( B \right) = \frac{3}{6} = \frac{1}{2}\).

. Vậy \(P\left( C \right) = \frac{4}{6} = \frac{2}{3}\).