Có hai túi I và II. Túi I chứa 3 tấm thẻ, đánh số 2 ; 3 ; 4. Túi II chứa 32 tấm thẻ, đánh số 5 ; 6. Từ mỗi túi I và II, rút ngẫu nhiên một tấm thẻ. Tính xác suất của các biến cố sau:
A: “Hai số ghi trên hai tấm thẻ chênh nhau 2 đơn vị”;
B: “Hai số ghi trên hai tấm thẻ chênh nhau lớn hơn 2 đơn vị”;
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”;
D: “Tổng hai số ghi trên hai tấm thẻ là một số nguyên tố”.
Có hai túi I và II. Túi I chứa 3 tấm thẻ, đánh số 2 ; 3 ; 4. Túi II chứa 32 tấm thẻ, đánh số 5 ; 6. Từ mỗi túi I và II, rút ngẫu nhiên một tấm thẻ. Tính xác suất của các biến cố sau:
A: “Hai số ghi trên hai tấm thẻ chênh nhau 2 đơn vị”;
B: “Hai số ghi trên hai tấm thẻ chênh nhau lớn hơn 2 đơn vị”;
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”;
D: “Tổng hai số ghi trên hai tấm thẻ là một số nguyên tố”.
Câu hỏi trong đề: 30 bài tập Toán 9 Cánh diều Ôn tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
|
Túi I Túi II |
5 |
6 |
|
2 |
\(\left( {2;5} \right)\) |
\(\left( {2;6} \right)\) |
|
3 |
\(\left( {3;5} \right)\) |
\(\left( {3;6} \right)\) |
|
4 |
\(\left( {4;5} \right)\) |
\(\left( {4;6} \right)\) |
Ta có: \[\Omega = \left\{ {\left( {2;5} \right);\left( {2;6} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;5} \right);\left( {4;6} \right)} \right\} \Rightarrow n = 6\].
\(A = \left\{ {\left( {3;5} \right);\left( {4;6} \right)} \right\} \Rightarrow n\left( A \right) = 2\). Vậy \(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).
\(B = \left\{ {\left( {2;5} \right);\left( {2;6} \right);\left( {3;6} \right)} \right\} \Rightarrow n\left( B \right) = 3\). Vậy \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\).
\({\rm{C}} = \left\{ {\left( {2;5} \right);\left( {2;6} \right);\left( {3;6} \right);\left( {4;5} \right);\left( {4;6} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{C}} \right) = 5\). Vậy \({\rm{P}}\left( C \right) = \frac{5}{6}\).
\[D = \left\{ {\left( {2;5} \right)} \right\} \Rightarrow n\left( D \right) = 1\]. Vậy \(P\left( D \right) = \frac{1}{6}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.
a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega \right) = 10\]
b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).
\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].
Lời giải
a) Bảng tần số tương đối:
|
Đội tuyển |
Thái Lan |
Malaysia |
Myanmar |
Việt Nam |
Indonesia |
|
Tần số tương đối |
47% |
19% |
16% |
9% |
9% |
b) Bảng tần số:
|
Đội tuyển |
Thái Lan |
Malaysia |
Myanmar |
Việt Nam |
Indonesia |
|
Tần số |
15 |
6 |
5 |
3 |
3 |
c) Vẽ biểu đồ tần số dạng cột biểu diễn bảng tần số thu được ở câu b theo các bước đã học.
d) Thái Lan là đội vô địch bóng đá nam SEA Games nhiều lần nhất, với 15 lần.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
