Câu hỏi:

01/02/2026 11 Lưu

Một chiếc hộp chứa 1 viên bi xanh, 1 viên bi đỏ và 1 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Dung lần lượt lấy ra ngẫu nhiên từng viên bi từ trong hộp cho đến khi hết bi.

a) Xác định không gian mẫu của phép thử.

b) Tính xác suất của các biến cố sau:

A: “Viên bi màu xanh được lấy ra cuối cùng”;

B: “Viên bi màu trắng được lấy ra trước viên bi màu đỏ”;

C: “Viên bi lấy ra đầu tiên không phải là bi màu trắng”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Kí hiệu lần lượt là viên xanh, đỏ, trắng. Ta viết có nghĩa là lấy viên xanh, đến viên đỏ và cuối cùng là lấy viên trắng.

b) Ta có:. Vậy \({\rm{P}}\left( A \right) = \frac{2}{6} = \frac{1}{3}\).

. Vậy \({\rm{P}}\left( B \right) = \frac{3}{6} = \frac{1}{2}\).

. Vậy \(P\left( C \right) = \frac{4}{6} = \frac{2}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.

a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega  \right) = 10\]

b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).

\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].

Lời giải

a) Số kết quả có thề xảy ra khi bạn An chọn 1 viên bi từ hộp thứ nhất là 9.

Số kết quả thuận lợi cho biến cố A: "Bạn An chọn được viên bi màu xanh" là 3 .

Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{3}{9} = \frac{1}{3}\).

b) Gọi \(x\) là số viên bi đỏ trong hộp thứ hai. Số kết quả có thể xảy ra khi Thắng chọn 1 viên bi từ hộp thứ hai là \(x + 5\). Số kết quả thuận lợi cho biến cố B: "Bạn Thắng chọn được viên bi màu xanh" là 5 .

Xác suất của biến cố B là \(P(B) = \frac{5}{{x + 5}}.\)Do \(P(A) = P(B)\) nên \(\frac{5}{{x + 5}} = \frac{1}{3}\).

Giải phương trình này, ta được \(x = 10\).

Vậy trong hộp thứ hai có 10 viên bi đỏ.