Bạn An gieo một con xúc xắc cân đối và bạn Bình gieo một đồng xu cân đối. Tính xác suất của các biến cố sau:
E: “Số chấm xuất hiện trên con xúc xắc là 6 và đồng xu xuất hiện mặt sấp”;
F: “Số chấm xuất hiện trên con xúc xắc là số lẻ”;
G: “Số chấm xuất hiện trên con xúc xắc là số chẵn và đồng xu xuất hiện mặt sấp”;
H: “Số chấm xuất hiện trên con xúc xắc là 5 hoặc đồng xu xuất hiện mặt ngửa”.
Bạn An gieo một con xúc xắc cân đối và bạn Bình gieo một đồng xu cân đối. Tính xác suất của các biến cố sau:
E: “Số chấm xuất hiện trên con xúc xắc là 6 và đồng xu xuất hiện mặt sấp”;
F: “Số chấm xuất hiện trên con xúc xắc là số lẻ”;
G: “Số chấm xuất hiện trên con xúc xắc là số chẵn và đồng xu xuất hiện mặt sấp”;
H: “Số chấm xuất hiện trên con xúc xắc là 5 hoặc đồng xu xuất hiện mặt ngửa”.
Câu hỏi trong đề: 30 bài tập Toán 9 Cánh diều Ôn tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
Mô tả không gian mẫu:
|
Đồng xu Xúc xắc |
\(S\) |
\(N\) |
|
1 |
\(\left( {1,S} \right)\) |
\(\left( {1;N} \right)\) |
|
2 |
\(\left( {2;S} \right)\) |
\(\left( {2;N} \right)\) |
|
3 |
\(\left( {3;S} \right)\) |
\(\left( {3;N} \right)\) |
|
4 |
\(\left( {4;S} \right)\) |
\(\left( {4;N} \right)\) |
|
5 |
\(\left( {5;S} \right)\) |
\(\left( {5;N} \right)\) |
|
6 |
\(\left( {6;S} \right)\) |
\(\left( {6;N} \right)\) |
Có 12 kết quả có thể là đồng khả năng. \(n(\Omega ) = 12\).
- Có 1 kết quả thuận lợi cho biến cố \(E\) là \((6,S)\). Vậy \(P\left( E \right) = \frac{1}{{12}}\).
- Có 6 kết quả thuận lợi cho biến cố \(F\) là \((1,S);(1,N);(3,S);(3,N);(5,S)\); \((5,N)\). Vậy \(P\left( F \right) = \frac{6}{{12}} = \frac{1}{2}\).
- Có 3 kết quả thuận lợi cho biến cố \(G\) là \((2,S);(4,S);(6,S)\). Vậy \(P\left( G \right) = \frac{3}{{12}} = \frac{1}{4}\).
- Có 7 kết quả thuận lợi cho biến cố \(H\) là \((5,S);(5,N);(1,N);(2,N);(3,N);\) \((4,N);(6,N)\). Vậy \(P\left( H \right) = \frac{7}{{12}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.
a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega \right) = 10\]
b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).
\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].
Lời giải
a) Bảng tần số tương đối:
|
Đội tuyển |
Thái Lan |
Malaysia |
Myanmar |
Việt Nam |
Indonesia |
|
Tần số tương đối |
47% |
19% |
16% |
9% |
9% |
b) Bảng tần số:
|
Đội tuyển |
Thái Lan |
Malaysia |
Myanmar |
Việt Nam |
Indonesia |
|
Tần số |
15 |
6 |
5 |
3 |
3 |
c) Vẽ biểu đồ tần số dạng cột biểu diễn bảng tần số thu được ở câu b theo các bước đã học.
d) Thái Lan là đội vô địch bóng đá nam SEA Games nhiều lần nhất, với 15 lần.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
