Câu hỏi:

03/02/2026 17 Lưu

Xác định tâm và bán kính của đường tròn nội tiếp tam giác đều ABC có độ dài cạnh bằng a .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có tam giác ABC đều.

Gọi O là trực tâm của tam giác đồng thời là giao điểm ba đường phân giác trong.

Vậy O là tâm của đường tròn nội tiếp tam giác đều ABC . Ta có: BAH^=CAH^=60°2=30°

Xác định tâm và bán kính của đường tròn nội tiếp tam giác đều ABC có độ dài cạnh bằng a . (ảnh 1)

Xét tam giác AHB vuông tại H có cạnh huyền AB=a,BAH^=30°

Theo định lí về hệ thức lượng trong tam giác vuông, ta có: AH=ABcosBAH=acos30°=a32.

(Lưu ý: Có thể kết luận ngay \({\rm{AH}} = \frac{{{\rm{a}}\sqrt 3 }}{2}\) vì đều cạnh a ).

Mặt khác tam giác ABC đều nên trực tâm O cũng là trọng tâm \( \Rightarrow {\rm{OH}} = \frac{1}{3}{\rm{AH}} = \frac{1}{3} \cdot \frac{{{\rm{a}}\sqrt 3 }}{2} = \frac{{{\rm{a}}\sqrt 3 }}{6}.\)

Vậy bán kính đường tròn nội tiếp tam giác đều cạnh a bằng \(\frac{{{\rm{a}}\sqrt 3 }}{6}\).

Nhận xét: Trong tam giác đều tâm đường tròn nội tiếp và tâm đường tròn ngoại tiếp trùng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\begin{array}{l}a = R\sqrt 2 = 3\sqrt 2 \left( {cm} \right)\\S = {a^2} = {\left( {3\sqrt 2 } \right)^2} = 18\left( {c{m^2}} \right)\end{array}\]

Lời giải

Cho \[\Delta ABC\] vuông tại \[A\], có \[AB = 9cm,AC = 12cm\]. Gọi \[I\] là tâm đường tròn nội tiếp, \[G\] là trọng tâm của tam giác. Tính độ dài \[IG\] (ảnh 1)

Gọi \[D,E,F\] là tiếp điểm của đường tròn \[\left( I \right)\] với \[AB\]

\[\Delta ABC\] vuông tại \[A\], theo định lý Pytago ta có: \[BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{9^2} + {{12}^2}}  = 15\left( {cm} \right)\]

Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \[AD = AF;BD = BE;CE = CF\]

Do đó \[2AD + 2BE + 2CE = AB + BC + CA = 9 + 12 + 15 = 36\]

\[ \Leftrightarrow 2AD + 2BC = 36 \Leftrightarrow AD = 3\left( {cm} \right) \Rightarrow BD = 6\left( {cm} \right);DI = 3\left( {cm} \right)\]

Gọi \[N = BI \cap AC\], ta có: \[\frac{{BI}}{{BN}} = \frac{{BD}}{{BA}} = \frac{6}{9} = \frac{2}{3} = \frac{{BG}}{{BM}} \Rightarrow \left\{ \begin{array}{l}IG//NM\\IG = \frac{2}{3}NM\end{array} \right.\]

Ta có \[\diamondsuit IDAF\] là hình vuông, có: \[\frac{{BD}}{{BA}} = \frac{{DI}}{{AN}} = \frac{2}{3} \Rightarrow AN = 4,5\left( {cm} \right)\]

Mà \[M\] là trung điểm của \[AC\] nên: \[NM = AM - AN = 6 - 4,5 = 1,5\left( {cm} \right) \Rightarrow IG = 1\left( {cm} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP