Câu hỏi:

03/02/2026 5 Lưu

Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC.

Bài 7.	Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC.  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Bài 7.	Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC.  (ảnh 2)

Theo công thức tính góc của đa giác đều, ta có:

\(\widehat {ADB} = \frac{{\left( {6 - 2} \right){{.180}^0}}}{6} = {120^0} \Rightarrow \widehat {DAB} = \widehat {DBA} = {30^0};\)

\(\widehat {ADC} = \frac{{\left( {5 - 2} \right){{180}^0}}}{5} = {108^0} \Rightarrow \widehat {DAC} = \widehat {DCA} = {36^0};\)  

Suy ra \(\widehat {BDC} = {360^0} - {120^0} - {108^0} = {132^0}\) .

Ta có ∆BDC \[\left( {DB = DC} \right)\] cân tại D. Do đó \(\widehat {DBC} = \widehat {DCB} = \frac{{{{180}^0} - {{132}^0}}}{2} = {24^0}\) .

Suy ra \(\widehat {BAC} = {30^0} + {36^0} = {66^0};\widehat {{\rm{ }}ABC} = {30^0} + {24^0} = {54^0};\widehat {{\rm{ }}BCA} = {24^0} + {36^0} = {60^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích là \(259,8:6 = 43,3\left( {\;c{m^2}} \right)\). Ta có \(\widehat {FOE} = 360^\circ :6 = 60^\circ \).

Do đó \(\widehat {OEH} = 60^\circ \) ( \(\Delta OFE\) là tam giác đều). Diện tích \(\Delta OFE:S = \frac{1}{2}.OH.EF = \frac{1}{2}EF.\sqrt {O{E^2} - H{E^2}} \).

\(OE = EF;HE = \frac{1}{2}EF\).

Nên \(S = \frac{1}{2} \cdot EF \cdot \sqrt {F{E^2} - {{\left( {\frac{1}{2}EF} \right)}^2}} = \frac{1}{2}.EF.\sqrt {F{E^2} - \frac{1}{4}F{E^2}} = \frac{1}{2}.EF.\sqrt {\frac{3}{4}F{E^2}} = \frac{{F{E^2}}}{4}\sqrt 3 \).

Suy ra \(43,3 = \frac{{F{E^2}}}{4}\sqrt 3 \Rightarrow F{E^2} = \frac{{43,3.4}}{{\sqrt 3 }} \approx 100 \Rightarrow FE = \sqrt {100} = 10\left( {\;cm} \right)\).

Lưu ý: Diện tích tam giác đều có cạnh \(a\)\(S = \frac{{{a^2}\sqrt 3 }}{4}\).

Lời giải

Bài 5.	Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)

Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).

Từ đó \[AM = AN\]\[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP