Cho ngũ giác đều \(ABCDE\). Gọi \(I\) là giao diểm của \(AD\) và \(BE\). Chứng minh rằng
a) \(DIBC\) là hình bình hành;
b) \(D{I^2} = AI \cdot AD\).
Cho ngũ giác đều \(ABCDE\). Gọi \(I\) là giao diểm của \(AD\) và \(BE\). Chứng minh rằng
a) \(DIBC\) là hình bình hành;
b) \(D{I^2} = AI \cdot AD\).
Quảng cáo
Trả lời:
a) Ta có mỗi góc trong của ngũ giác đều có số đo là \(108^\circ \) hay \[\widehat {AED} = 108^\circ \]; Tam giác \[AED\]cân tại \[E\]từ đó \(\widehat {{A_1}} = \widehat {{D_1}} = 36^\circ \); Tương tự tính được \(\widehat {{B_1}} = \widehat {{E_1}} = 36^\circ = \widehat {{D_1}}\)
Vậy \(\widehat {{I_1}} = \widehat {{E_1}} + \widehat {{A_1}} = 72^\circ \) (góc ngoài của tam giác \(EAI\)) và \({D_2} = \widehat {EDC} - \widehat {{D_1}} = 108^\circ - 36^\circ = 72^\circ \). Vậy \(\widehat {{D_2}} = \widehat {{I_1}}\) mà hai góc này ở vị trí đồng vị suy ra \[IB//DC\]. Chứng minh tương tự ta có \[DI//BC\] hay \(DIBC\) là hình bình hành.
b) Xét tam giác \(AIE\) và tam giác \(EAD\), ta có
+ Góc \(A\) chung;
+ \(\widehat {AEI} = \widehat {ADE}\).
\( \Rightarrow \Delta AIE\~\Delta AED(\;{\rm{g}} - {\rm{g}})\)suy ra \(\frac{{AI}}{{AE}} = \frac{{AE}}{{AD}}\) suy ra \(AI \cdot AD = A{E^2} \cdot B{C^2} = D{I^2}\)

Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích là \(259,8:6 = 43,3\left( {\;c{m^2}} \right)\). Ta có \(\widehat {FOE} = 360^\circ :6 = 60^\circ \).
Do đó \(\widehat {OEH} = 60^\circ \) ( \(\Delta OFE\) là tam giác đều). Diện tích \(\Delta OFE:S = \frac{1}{2}.OH.EF = \frac{1}{2}EF.\sqrt {O{E^2} - H{E^2}} \).
Mà \(OE = EF;HE = \frac{1}{2}EF\).
Nên \(S = \frac{1}{2} \cdot EF \cdot \sqrt {F{E^2} - {{\left( {\frac{1}{2}EF} \right)}^2}} = \frac{1}{2}.EF.\sqrt {F{E^2} - \frac{1}{4}F{E^2}} = \frac{1}{2}.EF.\sqrt {\frac{3}{4}F{E^2}} = \frac{{F{E^2}}}{4}\sqrt 3 \).
Suy ra \(43,3 = \frac{{F{E^2}}}{4}\sqrt 3 \Rightarrow F{E^2} = \frac{{43,3.4}}{{\sqrt 3 }} \approx 100 \Rightarrow FE = \sqrt {100} = 10\left( {\;cm} \right)\).
Lưu ý: Diện tích tam giác đều có cạnh \(a\) là \(S = \frac{{{a^2}\sqrt 3 }}{4}\).
Lời giải
![Bài 5. Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/11-1769711011.png)
Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).
Từ đó \[AM = AN\] và \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

