Cho tam giác đều ABC nội tiếp đường tròn \(({\rm{O}})\) như hình vẽ. Phép quay ngược chiều 60o tâm O biến các điểm \(A,B,C\) lần lượt thành các điểm \(D,E,F\). Chứng minh rằng \[ADBECF\] là một lục giác đều.

Cho tam giác đều ABC nội tiếp đường tròn \(({\rm{O}})\) như hình vẽ. Phép quay ngược chiều 60o tâm O biến các điểm \(A,B,C\) lần lượt thành các điểm \(D,E,F\). Chứng minh rằng \[ADBECF\] là một lục giác đều.

Câu hỏi trong đề: 18 bài tập Toán 9 Cánh diều Ôn tập chương 9 có đáp án !!
Quảng cáo
Trả lời:

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\) và nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).
Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)
Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)
Lại có mà (cmt)
Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.
Chứng minh tương tự các tam giác \(EOC\) và \(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)
Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)
Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)
Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phép quay ngược chiều 72o tâm O biến điểm A biến B thì các điểm \(B,C,D,E\) lần lượt biến thành các điểm \(C,D,E\)và A .
b) Ba phép quay tâm O giữ nguyên hình ngũ giác đều:
1. Phép quay ngược chiều 144o;
2. Phép quay ngược chiều 216o;
3. Phép quay thuận chiều 72o.
Bạn hãy tìm thêm những phép quay còn lại giữ nguyên hình ngũ giác đều.
Lời giải
a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.
Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].
b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hình ngũ giác đều \[ABCDE\]có tâm \(O\) (Hình vẽ). a) Phép quay ngược chiều tâm O biến điểm A thành điểm B thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào? b) Chỉ ra ba phép quay tâm O giữ nguyên hình ngũ giác đều đã cho. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/19-1769711285.png)


