Câu hỏi:

03/02/2026 12 Lưu

Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (Hình vẽ). Hãy chỉ ra bốn phép quay biến đa giác đều đó thành chính nó.

Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (Hình vẽ). Hãy chỉ ra bốn phép quay biến đa giác đều đó thành chính nó. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (Hình vẽ). Hãy chỉ ra bốn phép quay biến đa giác đều đó thành chính nó. (ảnh 2)

Đa giác đều 12 cạnh \[ABCDEFGHIKLM\] nội tiếp đường tròn \(\left( O \right)\) (Xem hình vẽ).

Ta có: AOB^=360°12=30° và AOB^=BOC^=COD^=DOE^==30°

\(OA = OB = OC = OD = \ldots \) (bán kính đường tròn ngoại tiếp)

Ta chọn phép quay thuận chiều (hoặc ngược chiều) góc quay 30°,60°,90°,120° biến đa giác đã cho thành chính nó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phép quay ngược chiều 72o tâm O biến điểm A biến B thì các điểm \(B,C,D,E\) lần lượt biến thành các điểm \(C,D,E\)và A .

b) Ba phép quay tâm O giữ nguyên hình ngũ giác đều:

1. Phép quay ngược chiều 144o;

2. Phép quay ngược chiều 216o;

3. Phép quay thuận chiều 72o.

Bạn hãy tìm thêm những phép quay còn lại giữ nguyên hình ngũ giác đều.

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP