Câu hỏi:

04/02/2026 10 Lưu

Cho tam giác \(ABC\) vuông tại \(A,BC = 10\;{\rm{cm}}\), đường cao \(AH = 4\;{\rm{cm}}\). Quay tam giác \(ABC\) một vòng quanh cạnh \(BC\). Tính thể tích hình tạo thành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \(ABC\) vuông tại \(A,BC = 10\;{\rm{cm}}\), đường cao \(AH = 4\;{\rm{cm}}\). Quay tam giác \(ABC\) một vòng quanh cạnh \(BC\). Tính thể tích hình tạo thành. (ảnh 1)

Khi quay tam giác \(ABC\) một vòng quanh cạnh \(BC\), hình tạo thành gồm hai hình nón có đường cao theo thứ tự là \(HB\) và \(HC\). Thể tích của hình tạo thành bằng.

\(\frac{1}{3}\pi  \cdot A{H^2} \cdot BH + \frac{1}{3}\pi  \cdot A{H^2} \cdot CH = \frac{1}{3}\pi  \cdot A{H^2}(BH + CH)\)

\( = \frac{1}{3}\pi  \cdot A{H^2}.BC = \frac{1}{3}\pi  \cdot {4^2}.10 = \frac{{160}}{3}\pi \,\,(c{m^3})\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì chiếc nón hình nón có bán kính đáy \[R = 28:2 = 14cm\] và đường sinh \[l = 30cm\]nên diện tích xung quanh của chiếc nón là: \({S_{xq}} = \pi Rl = 3,14.\;14.\;30 = 1318,8\;\left( {c{m^2}} \right)\)

Vậy diện tích lá dùng để làm nón là \(110\% .1318,8 = 1450,68\)\[c{m^2}.\]

Lời giải

Một lọ hình trụ được

Gọi bán kính và chiều cao của hình trụ lần lượt là \(R\) và \(h\).

Khi đó hình hộp chữ nhật có cạnh đáy là \[2R\] và chiều cao là\[h\]. Gọi \({V_1}\) và \({V_2}\) lần lượt là thể tích của hình trụ và hình hộp.

Ta có \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi {R^2}h}}{{4{R^2}h}}.\) Do đó \(\frac{{270}}{{{V_2}}} = \frac{\pi }{4}\).

Suy ra \({V_2} = \frac{{270 \cdot 4}}{\pi } \approx 344\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\)

Vậy thể tích hình hộp là \(344\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP