Câu hỏi:

13/07/2024 8,910

Hãy nêu định nghĩa của sinα , cosα và giải thích vì sao ta có:

sin(α +k2 π)=sinα;k ∈Z

cos(α +k2 π)=cosα;k ∈Z

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Định nghĩa của sin α; cos α

Trên đường tròn lượng giác, xét cung AM có số đo α

Gọi H và K lần lượt là hình chiếu của M trên trục Ox, Oy.

Tung độ y = OK¯ của điểm M được gọi là sin của α : sin α = OK¯

Hoành độ x = OH¯ của điểm M được gọi là cos của α : cos α = OH¯

Trên đường tròn lượng giác trong mặt phẳng Oxy, lấy điểm A (1; 0) làm gốc.

Khi đó các cung có số đo hơn kém nhau một bội của 2π có điểm cuối trùng nhau.

Giả sử cung α có điểm cuối là M(x; y)

Khi đó với mọi k ∈ Z thì cung α + k2π cũng có điểm cuối là M.

Giải bài 1 trang 155 SGK Đại Số 10 | Giải toán lớp 10

sin α = y, sin (α + k2π) = y nên sin(α + k2π) = sinα

cos α = x, cos(α + k2π) = x nên cos(α + k2π) = cosα

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức:

Giải bài 4 trang 155 SGK Đại Số 10 | Giải toán lớp 10

Xem đáp án » 13/07/2024 15,150

Câu 2:

Không sử dụng máy tính, hãy chứng minh:

Giải bài 6 trang 156 SGK Đại Số 10 | Giải toán lớp 10

Xem đáp án » 13/07/2024 6,467

Câu 3:

Chứng minh các đồng nhất thức sau đây:

Giải bài 7 trang 156 SGK Đại Số 10 | Giải toán lớp 10

Xem đáp án » 13/07/2024 5,427

Câu 4:

Tính

Giải bài 5 trang 156 SGK Đại Số 10 | Giải toán lớp 10

Xem đáp án » 13/07/2024 4,380

Câu 5:

Nêu định nghĩa của tanα , cotα và giải thích vì sao ta có:

tan(α + kπ) = tanα, k ∈Z;

cot(α + kπ) = cotα, k ∈Z;

Xem đáp án » 13/07/2024 4,114

Câu 6:

Chứng minh các biểu thức sau không phụ thuộc x

Giải bài 8 trang 156 SGK Đại Số 10 | Giải toán lớp 10

Xem đáp án » 13/07/2024 1,421

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store