Câu hỏi:
11/07/2024 4,192Câu hỏi trong đề: Giải Sách Bài Tập Toán 6 Tập 1 !!
Quảng cáo
Trả lời:
Ta có a.b = BCNN(a, b) . ƯCLN(a, b) = 336.12 = 4032.
Vì ƯCLN(a, b) = 12 nên a = 12a', b = 12b' (a', b' ∈ N), ƯCLN(a', b') = 1.
Ta có 12a'.12b' = 4032.
⇒ a'b' = 4032 : (12.12) = 28.
Do a' > b' và ƯCLN(a', b') = 1 nên
a' | 28 | 7 |
b' | 1 | 4 |
Suy ra
a | 336 | 84 |
b | 12 | 48 |
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi m (m ∈ N*) là số sách cần tìm.
Vì xếp thành từng bó 10, 12,15 và 18 cuốn đều vừa đủ bó nên số sách m là BC(10;12;15;18)
Ta có: 10 = 2.5
12 = 22.3
15 = 3.5
18 = 2.32
BCNN(10,12,15,18) = 22.32.5 = 180
BC(10,12,15,18) = {0;180;360;540;..}
Vì số sách nằm trong khoảng 200 đến 500 nên m = 360
Vậy có 360 cuốn sách
Lời giải
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m + 1) ⋮ 2; (m + 1) ⋮ 3; (m + 1) ⋮ 4; (m + 1) ⋮ 5; (m + 1) ⋮ 6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 300)
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22 . 3 . 5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.