Câu hỏi:

13/07/2024 14,154

Cho tam giác ADE có ∠D = ∠E. Tia phân giác của góc D cắt AE ở điểm M. Tia phân giác của góc E cắt AD ở điểm N. So sánh các độ dài DN và EM

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Tam giác ADE có: ∠D = ∠E (giả thiết) (1)

∠(D1) = ∠(D2) = (1/2)∠D (vì DM là tia phân giác của góc ADE) (2)

∠(E1) = ∠(E2) = (1/2)∠E (vì EN là tia phân giác của góc AED) (3)

Từ (1); (2) và (3) suy ra: ∠(D1 ) = ∠(D2) = ∠(E1) = ∠(E2 )

+) Xét ΔDNE và ΔEMD, ta có:

∠(NDE) = ∠(MED) (giả thiết)

DE cạnh chung

∠(D2) = ∠(E2 ) (chứng minh trên)

Suy ra: ΔDNE = ΔEMD (g.c.g)

Vậy DN = EM (hai cạnh tương ứng)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét hai tam giác vuông ABD và EBD, ta có:

∠(BAD) =∠(BED) =90o

Cạnh huyền BD chung

∠(ABD) =∠(EBD) (Do BD là tia phân giác của góc ABC)

Suy ra: Δ ABD= Δ EBD(cạnh huyền, góc nhọn)

Vậy BA = BE ( hai cạnh tương ứng)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP