Câu hỏi:
13/07/2024 4,225Cho tam giác ABC cân tại A có cạnh bên bằng 3cm. Gọi D là một điểm thuộc đáy BC. Qua D, kẻ cac đường thẳng song song vói các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E. Tính tổng DE + DF
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có: DF // AC(gt)
=> ∠D1 = ∠C (hai góc đồng vị) (1)
Lại có: ΔABC cân tại A
=> ∠B = ∠C (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: ∠B = ∠D1
Hay ΔBFD cân tại F =>BF = DF (3)
Nối AD. Xét ΔAFD và ΔDEA có:
∠ADF =∠EAD(so le trong vì DF // AC)
AD cạnh chung
∠DAF =∠ADE (so le trong vì DE // AB)
Suy ra: ΔAFD= ΔDEA(g.c.g)
Nên AF = DE (hai cạnh tương ứng) (4)
Từ(3) và (4) suy ra: DE + DF = AF + BF = AB = 3cm
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC. Gọi giao điểm của đường thẳng này với AB, AC theo thứ tự là D,E.
Chứng minh rằng: DE = BD + CE
Câu 2:
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh rằng BD // EC
Câu 3:
Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC, N là trung điểm của AB. Chứng minh rằng BM = CN
Câu 4:
Tính góc ở đáy của một tam giác cân biết góc ở đỉnh bằng 50o,bằng ao.
Câu 5:
Cho tam giác ABC cân tại A. Lấy điểm H thuộc cạnh AC, điểm K thuộc cạnh AB sao cho AH = AK. Gọi O là giao điểm của BH và CK. Chứng minh rằng ΔOBClà tam giác cân.
Câu 6:
Cho tam giác ABC cân tại A có ∠A= 100°. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng MN // BC
Câu 7:
Cho tam giác đều ABC. Lấy các điểm D, E , F theo thứ tự thuộc các cạnh AB, BC và CA sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều?
về câu hỏi!