Câu hỏi:

13/07/2024 1,050 Lưu

Cho hình bs 4. Chứng minh rằng :

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

C,O,D thẳng hàng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+) Xét tam giác OAD có: OA = OD (= bán kính đường tròn)

Suy ra tam giác OAD cân tại O.

Suy ra: ∠A = ∠D ( tính chất tam giác cân). (1)

+) Xét tam giác OBC có: OB = OC (= bán kính đường tròn)

Suy ra tam giác OBC cân tại O.

Suy ra: ∠B = ∠C ( tính chất tam giác cân). (2)

+) Lại có: ∠A = ∠B ( giả thiết) (3)

Từ (1); (2) và (3) suy ra: ∠A = ∠B = ∠C = ∠D

Vậy hai tam giác cân OAD và OBC có góc ở đáy bằng nhau nên góc ở đỉnh bằng nhau: ∠AOD = ∠BOC (4).

+) Ta có: ∠AOD + ∠DOB = 180º ( hai góc kề bù) (5)

Từ (4) và (5) suy ra: ∠BOC + ∠DOB = 180º hay 3 điểm C, O và D thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: DI // BC (giả thiết)

Suy ra:∠I1 =∠B1(so le trong) (1)

Lại có:∠B1 =∠B2 (2)

(vì BI là tia phân giác góc ABC)

Từ (1) và (2) suy ra:∠I1 =∠B2

=>∆BDI cân tại D =>BD=DI (3)

Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)

Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)

Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E

Suy ra: CE = EI (6)

Từ (3) và (6) suy ra: BD + CE = DI + EI = DE

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: BD là tia phân giác của ∠ABC (giả thiết)

Suy ra: Giải sách bài tập Toán 7 | Giải sbt Toán 7 (1)

Lại có: BE = BC (giả thiết)

=>∆BEC cân tại B (theo định nghĩa)

Suy ra: ∠E= ∠BCE (tính chất tam giác cân)

∆BEC có ABC là góc ngoài đỉnh B

=>∠ABC= ∠E + ∠BCE (tính chất góc ngoài tam giác)

Suy ra: ∠ABC=2∠E

Hay ∠E = (1/2)∠ABC (2)

Từ (1) và (2) suy ra: ∠E = ∠B1 = (1/2)∠ABC

Vậy BD // CE (vì có cặp góc ở vị trí đồng vị bằng nhau)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP