Câu hỏi:
13/07/2024 2,232Cho đoạn thẳng AB. Vẽ các cung tâm A và B có cùng bán kính sao cho chúng cắt nhau tại C và D. chứng minh rằng CD là đường trung trực của AB.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi H là giao điểm của AB và CD
Nối AC, AD,BC,BD
Xét ΔACD và ΔBCD, ta có:
AC = BC
(bán kính hai cung tròn bằng nhau)
AD = BD
CD cạnh chung
Suy ra: ΔACD = ΔBCD(c.c.c)
Suy ra: ∠C1 = ∠C2 (hai góc tương ứng)
Xét hai tam giác AHC và BHC. Ta có:
AC = BC (bán kính hai cung tròn bằng nhau)
∠C1 = ∠C2 (chứng minh trên)
CH cạnh chung
Suy ra: ΔAHC = ΔBHC(c.g.c)
Suy ra: AH = BH (hai cạnh tương ứng) (1)
Ta có : ∠H1 = ∠H2 (hai góc tương ứng)
∠H1 + ∠H2 =180° (hai góc kề bù)
Suy ra: ∠H1 = ∠H2 = 90o ⇒ CD ⊥ AB (2)
Từ (1) và (2) suy ra CD là đường trung trực của AB
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có AB/AC = 3/4 và BC = 15cm. Tính độ dài AB, AC
Câu 2:
Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD. Chứng minh rằng IB = IC, ID = IE.
Câu 3:
Cho tam giác ABC cân tại A, kẻ BH ⊥ AC. Gọi D là một điểm thuộc cạnh đáy BC. Kẻ DE ⊥ AC, DF ⊥ AB.
Chứng minh rằng DE + DF = BH
Câu 4:
Cho tam giác ADE cân tại A. Trên cạnh DE lấy các điểm B và C sao cho DB = EC < 1/2 DE. Chứng minh rằng AI là tia phân giác của góc BAC
Câu 5:
Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD. Gọi M là trung điểm BC. Chứng minh rằng ba điểm A, M, I thẳng hàng.
Câu 6:
Cho tam giác ADE cân tại A. Trên cạnh DE lấy các điểm B và C sao cho DB = EC < 1/2 DE. Gọi I là giao điểm của MB và NC. Tam giác IBC là tam giác gì? Chứng minh điều đó?
về câu hỏi!