Câu hỏi:

13/07/2024 12,419 Lưu

Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD. Chứng minh rằng IB = IC, ID = IE.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+)Theo giả thiết ta có: AB = AC và BD = CE nên:

AB + BD = AC + CE hay AD = AE.

+) Xét ΔABE và ΔACD có:

AB = AC (gt)

∠A chung

AE = AD (chứng minh trên)

⇒ ΔABE = ΔACD (c.g.c)

⇒ BE = CD (2 cạnh tương ứng) (1)

và ∠ABE = ∠ACD (2 góc tương ứng) (2)

Tam giác ABC cân nên ∠B1 = ∠C1. (3)

Từ (2) và (3) ⇒ ∠ABE - ∠B1 = ∠ACD - ∠C1, tức là ∠B2 = ∠C2.

⇒ ΔBIC cân tại I ⇒ IB = IC. (4)

Từ (1) và (4) suy ra BE - IB = CD – IC, tức là IE = ID.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Theo đề bài ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Theo tính chất dãy tỉ số bằng mhau ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

tam giác ABC vuông tại A

Áp dụng định lí pitago vào tam giác ABC ta có:

BC2 = AB2 + AC2 (2)

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

AB2 = 9. 9 = 81 ⇒ AB = 9 cm (vì AB > 0)

AC2 = 16. 9 = 144 ⇒ AC = 12 cm (vì AC > 0)

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ DK ⊥ BH

Ta có: BH ⊥AC(gt)

Suy ra: DK // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song)

⇒ ∠KDB = ∠C (hai góc đồng vị)

VìΔABC cân tại A nên ∠B = ∠C (tính chất tam giác cân)

Suy ra: ∠KDB = ∠B

Xét hai tam giác vuông BFD và DKB, ta có:

∠BFD = ∠DKB = 90o

BD cạnh huyền chung

∠FBD = ∠KDB (chứng minh trên)

Suy ra:ΔBFD=ΔDKB (cạnh huyền góc nhọn)

⇒ DF = BK (hai cạnh tương ứng)(1)

Nối DH. Xét ΔDEH và ΔHKD, ta có:

∠DEH = ∠DKH = 90o

DH cạnh huyền chung

∠EHD = ∠KDH (hai góc so le trong)

Suy ra:ΔDEH = ΔDKH( cạnh huyền , góc nhọn)

Suy ra: DE = HK ( hai cạnh tương ứng) (2)

Mặt khác: BH = BK + KH (3)

Từ (1), (2) và (3) suy ra: DF + DE = BH

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP