Câu hỏi:
19/04/2020 8,299Cho tam giác ABC có B > 90o, điểm D nằm giữa B và C. Chứng minh rằng AB < AD < AC
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trong ∆ABD ta có: ∠B > 90o
⇒ ∠B > ∠D1 ( trong 1 tam giác, góc tù là góc lớn nhất- chú ý tổng ba góc trong một tam giác bằng 180º) ⇒ AD > AB (đối diện góc lớn hơn là cạnh lớn hơn) (1)
Trong ΔABD ta có: ∠D2 là góc ngoài tại đỉnh D nên ∠D2 = ∠B + ∠BAD. Suy ra: ∠D2 > ∠B > 90o
Trong ΔADC ta có: ∠D2 > 90o
⇒ ∠D2 > ∠C ⇒ AC > AD (cạnh đối diện góc lớn hơn là cạnh lớn hơn) (2)
Từ (1) và (2) suy ra: AB < AD < AC
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC ở D. So sánh các độ dài AD, DC.
Câu 2:
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. So sánh ∠(BAM) và ∠(MAC)
Câu 3:
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt BC ở D. So sánh các độ dài BD, DC.
Câu 4:
Chứng minh rằng nếu một tam giác vuông có một góc nhọn bằng 30o thì cạnh góc vuông đối diện với nó bằng nửa cạnh huyền.
Câu 5:
So sánh các cạnh của tam giác ABC biết rằng ∠A = 80o, ∠C = 40o
Câu 6:
Cho tam giác ABC vuông tại A, điểm K nằm giữa A và C. So sánh độ dài BK, BC.
Câu 7:
So sánh các góc của tam giác ABC biết rằng AB = 5cm, BC = 5cm, AC = 3cm.
về câu hỏi!