Câu hỏi:

19/04/2020 23,052

Chứng minh rằng nếu một tam giác vuông có một góc nhọn bằng 30o thì cạnh góc vuông đối diện với nó bằng nửa cạnh huyền.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ΔABC, ta có: ∠A= 90o; ∠B= 30o

Trên cạnh BC lấy điểm D sao cho CD = AC

Ta có: ΔACD cân tại C

Mà ∠C + ∠B = 90o (tính chất tam giác vuông)

Suy ra: ∠C = 90o - ∠B = 90o - 30o = 60o

Suy ra: ΔACD đều

Suy ra: AC = AD = DC và ∠A1= 60o

Ta có: ∠A1+ ∠A2 = ∠BAC = 90o

⇒ ∠A2 = 90o - ∠A1 = 90o - 60o = 30o

Trong ΔADB, ta có: ∠A2 = ∠B= 30o

Suy ra: ΔADB cân tại D (vì có 2 góc kề cạnh AB bằng nhau)

Hay AD = DB

Suy ra: AC = CD = DB mà CD + DB = BC

Vậy AC = 1/2 BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ DH ⊥ BC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét hai tam giác vuông ABD và HBD, ta có:

∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).

Cạnh huyền BD chung

∠BAD = ∠BHD = 90º

Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)

⇒ AD = HD (2 cạnh tương ứng) (1)

Trong tam giác vuông DHC có ∠DHC = 90o

⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)

Từ (1) và (2) suy ra: AD < DC

Lời giải

Trên tia đối tia MA lấy điểm D sao cho MD = MA

Xét ΔAMB và ΔDMC, ta có:

MA = MD (theo cách vẽ)

∠(AMB) = ∠(DMC) (đối đỉnh)

MB = MC (gt)

Suy ra: ΔAMB = ΔDMC (c.g.c)

Suy ra: AB = CD (2 cạnh tương ứng)

và ∠D = ∠A1(2 góc tương ứng) (1)

Mà AB < AC (gt)

nên: CD < AC

Trong ΔADC, ta có: CD < AC

Suy ra: ∠D > ∠A2(đối diện cạnh lớn hơn là góc lớn hơn) (2)

Từ (1) và (2) suy ra: ∠A1 > ∠A2hay ∠(BAM) > ∠(MAC) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP